==d) Sun Cobalt

Developer Technical Note

July 2001
DTN-14, Revision 0-1

Creating Package Files for the Sun Cobalt™ Qube 3

1 Overview

11

2.1

New software, updates, and third-party software for Sun Cobalt™ serversis delivered in the form of
downloadable software *.pkg files, referred to as package files. Package files are available from Cobalt’s web
and FTP sites, and from third-party vendors. Cobalt uses package files to distribute and install software
because it fits the Sun Cobalt philosophy of ease of use: users can install software using only aweb browser,
which is easier and more intuitive than telnet or other Unix command line interfaces.

This note describes the typical contents of a package file, and how to create one for the Sun Cobalt Qube 3
appliance (Qube 3). For more complete information on all aspects of developing applications for the Qube 3,
gotoftp://ftp.cobalt.conm pub/devel oper/ TechNot es/ devgui de. pdf.

Table of Contents

Overview 1
Audience 1

What is a Package File 1
BlueLinQ 1

About the Application Module 2

Naming Your Application Module 2

Building a New Service Module 3

Making your Application into a Package 3

How to Install your Package File on the Qube 3 6

Installation Process 6
Choices for the Installation Process 7

Package Structure 7
Package Dependency Model 11

Information for Installing Stand-alone Packages 11
Software Update Server 13

Development Details 14

Audience

The audience for this technical note are devel opers of software for the Qube 3. For more information, see
http://devel oper.cobalt.com

What is a Package File

A packagefileis a single downloadable compressed collection of files used for software installation or
updates for the Qube 3.

To create an application, you must create a modul e that includes all the components needed and structureit so
that it can be easily installed by users, in a package file format (. pkg). Thistechnical note lists the fields that
you need to include so that the Qube 3 can display the appropriate information during the installation process.
It also describes the appropriate directories, files, and resources for your application module.

Using BlueLinQ™ Technology

BlueLinQ*“ isthe software notification system for the Sun Cobalt Qube 3 and RaQ X TR products. BlueLinQ
isa Sun Cobalt innovation that gives you instant access to product updates and new services as they become

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 1of16

Developer Technical Note

==d) Sun Cobalt

available. Using BlueLinQ technology, your Qube 3 informs you when new software is available. With aclick
of abutton, you can download the new software package and automatically install it.

July 2001
DTN-14, Revision 0-1

3 About the Application Module

The application module is a self-contained bundle of files, directories, and resources required for a new
capability. Depending on the type of module you are creating, you choose the appropriate level of integration.
Some modules trigger both the user interface and the back end system; others are stand alone modul es.

New modules can contain any or all of the following code:
1) User Interface (Ul) modules
* Ul pages built using UIFC
 Navigation nodes, such as adding buttons and menu items

The Web mail servicethat is displayed on the Cobalt menu is an example of a service that is integrated only
with the user interface and uses IMAP as its back-end system. The files for the user interface go into the ui
directory; for more information about module directory layout, see <f_Link> on page —4.

1) Internationalization modules

* Internationalization resources to trandate the user interface into other languages.
2) Back-end modules

» CCE configuration files

* CCE handlers

Adding a user to the Qube 3 is an example of an instance that impacts only the back-end modules, where the
existing user interface is used and the CCE configuration files and handlers are invoked.

3) Binary modules

* Service binary and configuration files, for example, email modules have SendMai | and Maj or dono
binaries and modify the configuration files for these binaries.

« Databases that register users as they are created and notify event handlers about creating users. Thistype
of module uses the existing user interface.

These modules can be manually installed and completely unintegrated to the Cobalt User Interface (Ul).

4 Naming Your Application Module

Developers must use unique vendor-specific names for modules to avoid name conflicts.

Note

Cobalt uses base in its module names, for example,

base- devel . mod. Developers must differentiate their modules by naming the modules
with adistinctive name, preferably a name that reflects their company or product, for
example, vendor_name _module.

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 2 of 16

e : Developer Technical Note
= =g Sun Cobalt

DTN-14, Revision 0-1

5 Building a New Service Module

A service module is a self-contained bundle of files or directories and resources required for a new capability,
for example, an ecommerce product or a system backup product. New modules can contain any or al of the

following:
» Navigation nodes— ser vi ce. xni
* User Interface (Ul) pages built using UIFC — ser vi ce. php
* Internationalization resources — ser vi ce. po
» CCE configuration files— ser vi ce. schenm, ser vi ce. conf
» CCE handlers— ser vi ceMbd. pl , servi ceMod. ¢

* Service binaries and configuration — ser vi ced

Note
You can write handlers in any language. Cobalt provides bindings for C and Perl.

Cobalt enabling tools include:
» Standard directory structure document; see Figure 6, “Module File Hierarchy,” on page 15.

* Build tools to create |oadable modul e files (scripts and a M akefile)

6 Making your Application into a Package

This section describes the skeleton module for the Qube 3. By customizing the skeleton module for your
needs, you can integrate seamlessly into the Cobalt configuration environment.

To build a service module:

1) Create handlersto interact with the Cobalt Configuration Engine (CCE). A configuration file goesin
gl ue/ conf ; the actual handlersgoin gl ue/ handl ers.

2) Create any user interface components, if necessary. These include web and menu page descriptors,
which gointheui / web and ui / menu directories, respectively.

3) Writeany | ocal e files; thesegointhel ocal e directory.

4) Look att enpl at es/ spec. t npl andt enpl at es/ packi ng_list.tnpl.

Note

The default template to build RPM filesisin
[usr/sausal i to/ devel / t enpl at es. If you want to modify these templates, create a

template directory in your module. Copy these filesto your template directory and modify
them as needed.

5) Look at the top-level Makef i | e. Adjust the variablesto fit your situation.

The default build targets are mrake al | , make cl ean, nake install,andmake rpm

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 30of 16

Developer Technical Note

==d) Sun Cobalt

July 2001
DTN-14, Revision 0-1

Note

A sample skeleton module is availablein the Cobalt Developer web page. Go to
http://devel oper. cobal t. coniresources/ qube. sanpl ecode for the code
sample and Readmefile.

Here’s some more information about the defaultmake rules and expected file names:

Table 1: Thetop-level Makef i | e variables

Makefile Variables Description

VENDOR the vendor field for your module

VENDORNAME the actual vendor name; this name can be the same as VENDOR

SERVICE the name for the service

VERSION version number

RELEASE release number

BUILDARCH set to noar ch if you don’t want platform-specific RPMs generated.

XLOCALEPAT set to a space-separated list of locale patterns to exclude

BUILDUI packages all files in ui / web and ui / menu.

BUILDLOCALE set to yes to build these components, create RPMs, and create a
capstone RPM.

BUILDSRC build the files is in the sr ¢ directory.

BUILDGLUE If BUl LDGLUE is set to yes, packages all the handlers, object schemas,
configuration files for event triggers, and conf files. If set to no,
BUI LDGLUE does no packaging.

DEFLOCALE This locale is used for static HTML pages, for example, en orj a.

The BUILD variables determine which directories to include when calling thecl ean, i nstal | ,andr pm
targets.

The default make rulestake the BUI LD? variables and build up ui , gl ue, and | ocal e RPMS, if requested. If
any of these RPM S are generated, a capstone RPM is created aswell. A capstone is atype of packing list for
the RPMs.

Table 2: Module Directory L ayout

Directories Description

constructor capstone constructors

destructor capstone destructors

glue handler and configuration modification code

ui user interface and user interface menu code
locale locale information and locale-specific UI pages

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 4 of 16

Developer Technical Note

==d) Sun Cobalt

Table 2: Module Directory L ayout

July 2001
DTN-14, Revision 0-1

Directories Description

templates user-modifiable template files used in packing list and RPM
generation

src sr ¢ directory (optional)

RPMS RPMS directory (optional)

SRPMS source RPMS directory (optional)

The default make rules expect the following file layout:

1) gl ue/ conf/*

gl ue/ handl ers/ *
2)1 ocal e/l ocal eX/ $(SERVI CE) . po

3)ui / menu/ *

ui / web/ *

4)constructor/*

destructor/*

The default make rules place these files in the following locations:

gl ue/ conf/* -> $(CCEDI R)/ conf/ $(VENDOR) / $(SERVI CE) / *
gl ue/ handl ers/* -> $(CCEDI R)/ handl er s/ $(VENDOR) / $(SERVI CE) / *

| ocal e/ | ocal eX/ $(SERVI CE) . po - >
/usr/share/local e/l ocal eX/ LC_MESSAGES/ $(VENDOR) - $(SERVI CE) . np

ui / menu/* -> $(CCEDI R)/ ui / menu/ $(VENDOR) / $(SERVI CE) / *
ui / web/ * -> $(CCEDI R)/ ui / web/ $(VENDOR) / $(SERVI CE) / *

constructors/* $(CCEDI R)/ constructor/ $(VENDOR) / $(SERVI CE) /
destructors/ $(CCEDI R)/destructor/$(VENDOR)/ $(SERVI CE) / *

If your module does not contain compiled code, the above make rules should be all that you need for building
a service module. Otherwise, you need to know about a couple additional make rules. First, make checks for
Makefilesinthegl ue, src, and ui directories and uses them, if they are present. You must prepend the
PREFI X environment variable on the install phase of the Makef i | e so that RPMs are properly generated.

In addition, themake r pmrule does not touch the sr ¢ directory, so you must create any RPMsyou want from
separate specification files. t enpl at es/ packi ng_l i st. t npl should be updated to reflect any of these
RPM s without version numbers. You should create afile with the same name asthe RPM inther pns
directory to get the appropriate version included in the packing list.

Finally, you might need to edit t enpl at es/ r pndef s. t npl to add additional build, install, and file targets
for any files that you have. The <begi n [$%4 VARI ABLE> sectionsin ther pndef s. t npl file correspond to
the same[VARI ABLE_SECTI ON] sectionsint enpl at es/ spec. t npl . If you want to add something to
spec. t npl that is not dependent upon asingle RPM, you can directly add it to spec. t npl .

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 50f 16

Developer Technical Note

==d) Sun Cobalt

July 2001
DTN-14, Revision 0-1

Note

If you have a VENDORNAME specified, make searchesfirstin{gl ue, locale, ui,
src}/ $(VENDORNANE) for files before searching inthegl ue, | ocale, ui, andsrc
directories.

7 How to Install your Package File on the Qube 3
There are two ways that packages can be installed on Qube:
» manualy
* update server

Both these ways provide information about the package, that is, package meta-information, before the user
installs the package. This meta-information includes fields with the package name, vendor, description,
license, and whether package dependencies exists; these fields are described in Table 3. Thisinformation is
needed to properly display in the Qube Ul details about the package beforeits installed. To provide this
information, thisinformation isincluded in the package list and the package information directories for each
package.

Update servers aert you if they have new software for your Qube 3. When the Qube is alerted that thereisa
new version of software for the Qube, the update server and Qube have the following dialog:

1) The Qube 3 queries the server for information about new software. It provides details about the Qube
including the packages installs, Qube identification, and so forth.

2) Theupdate server replieswith list of available packages with associated information, such as license and
locale information. This informations corresponds to the packi ng_| i st and the contents of the
pkgi nf o directory.

3) IfanI nf oURL field is specified, a popup window with the URL is displayed when you go to the install
detail page. If an| nf oURL field is not specified, a short description of the package is displayed.

4) Installation can be selected.
The events around the manual installation are as follows:

1) The user on the Qube enters the package location through either browser upload, URL download, or
putting thefilein/ home/ packages.

2) The Qube prepares the package for installation and displays the installation page. This informations
corresponds to the packi ng_| i st and the contents of the pkgi nf o directory.

3) The contents of the installation page display a short description of the package that is to be installed.
4) Installation can be selected.

8 Installation Process
The following stages occur in the installation process:

« If the package requires the server to reboot, the user is prompted to reboot the machine.

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 6 of 16

Developer Technical Note

==d) Sun Cobalt

» Theinstall process looksfirst for aspl ash page If the spl ash page specifiesthepre-instal | ati on
option, it will look for ani ndex. cgi ori ndex. php pageto cal. It will passin the following two
variables a GET request to these files: submni t ur| and cancel url .

July 2001
DTN-14, Revision 0-1

Note

The spl ash page optionally specifies a pre-installation page, which allows developer to
create a custom page for the package including license information. This page must be a CGI
or PHP page that accepts GET requests.

* If the splash page doesn’t exist and the license field does, BlueL inQ will present a standard license page
containing the value of the license field.

Note
The Qube 3 software notification mechanism is called BlueL inQ.

» Oncethe user acceptsthelicense (if thereisalicense), BlueL inQ checks package dependencies, and halts
if there is adependency error. If not, BlueL inQ runs the pre-installation scripts, install RPM S, and then
runs the post-installation script. The scripts are located inthe scri pt s directory of the package.

Note

BlueLinQ will install an RPM only if it is newer than any existing RPMs. If thereisan
existing RPM on the server, BlueL inQ increments the reference count each time you add a
package with a RPM referenced in it. When you uninstall a package, the reference count is
reduced. If the reference count for a package is less than one, BlueL inQ deletes the RPM.

8.1 Choices for the Installation Process
You can customize your installation. You can change the look and feel of install by opting to include:
e ani nf oURL field
* asplash page
* ageneric license

The splash page must be a CGI or PHP file. The update process calls this CGI with the following URL
variables set: submi t URL and cancel URL.

9 Package Structure

The packagefileformatisat ar . gz file. When you install a packagefile, BlueL inQ checks for the following
items:

» whether thefileisat ar fileor acompressedt ar file
» whether thefileis signed
In packages for earlier Cobalt products, package files had the following elements:

* packing_list

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 7 of 16

Developer Technical Note

==d) Sun Cobalt

* RPMs
* SRPMs

July 2001
DTN-14, Revision 0-1

e install _nme script

Packages for earlier Cobalt products had scripts that performed all installation tasks. Package dependency
checking was done by the package itself. New packages have scripts that runs at specified times.The scripts
deal with the following issues:

* pre-installation

* post-installation

* pre-uninstallation
* post-uninstallation

BlueL inQ runs these scripts as part of the installation. Package dependencies are based on vendor name,
version number and package name. You can evaluate version number to determineif they are equal, less than,
or greater than the target version. The Qube 3 architecture currently checks athree-part field, for example, 1.0
or11.2.

The new packing list format includes the following elements as shown in Table 3, “ Package List Format,” on
page 8.

Note
All the information in the package list format is case-sensitive.

Table 3: Package List Format

Component Description

[Package -- Version=1.0]

Vendor vendor name can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

Vendor Tag internationalizable vendor string

Nanme packagename can include alphabetical characters, numbers,
underscore (_), and the plus sign (+). Spaces and hyphens (-) are
not permitted.

NanmeTag: internationalizable package name string.

Cat egory category information can include alphabetical characters,
numbers, underscore (_), and the plus sign (+). Spaces and
hyphens (-) are not permitted.

Locati on URL that specifies the package download location

I nf oURL additional information URL. Optional. Use this if you want to
display a new site (as opposed to installing a package).

I nf oURL options options that should be sent with to the URL, which can include
serial number, product identifier (product), and vendor name
(name).

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 8 of 16

Developer Technical Note

==d) Sun Cobalt

July 2001
DTN-14, Revision 0-1

Table 3: Package List Format

Component

Description

Ver si on

version of the package

Ver si on Tag

Internationalizable version number.

Si ze

size in bytes (only used by the update server.)

Product :

NOTE: use this field to specify as
many products as you are
including. Include one line for
each package. You can use a
regular expression to specify
products, for example:

Cobalt product requirements: for example, 4100WG or 4nnnWG.
NOTE: 4000WG is the product number for the basic Qube 3.

4010WG is the product number for the Qube 3 with caching;
4100WG is the product number for the Qube 3 with caching and
mirroring.

(4000/4010]4100) WG.

PackageType specify conpl et e or updat e

Opti ons uni nstal | abl e, reboot, refreshui, refreshcce
LongDesc internationalizable long description

Short Desc internationalizable short description

Copyri ght: internationalizable copyright string

Li cense internationalizable license information. Optional

Spl ash pre-install, post-install, pre-uninstall, post-uninstall

Depend package dependencies. for example, vendor : package. The

NOTE: Each dependency must be
on its own line. See See Package
Dependency Model on page 11.
for more information.

package won’t show up in the new or updates pages if these
dependencies aren’t met. Here’s what’s expected:

vendor : package vendor-package must exist.
vendor : package ! vendor-package must not exist.

vendor : package <=> ver si on vendor-package is less
than, equal to, or greater than the specified version number.

vendor : package ! = versi on vendor-package not equal
to version.

Vi si bl eDepend

NOTE: Each dependency must be
on its own line. See Package
Dependency Model on page 11
for more information.

just like Depend except that the package will show up in the new
or updates lists even if dependencies aren’t met.

(bsol et es

NOTE: Each obsoletes must be on
its own line. See See Package
Dependency Model on page 11.
for more information.

obsoletes vendor-packages

format:

vendor : package

vendor : package <=> version

RPM

used only by the actual package

SRPM

used only by the actual package

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 9 of 16

Developer Technical Note

==3 Sun Cobalt

DTN-14, Revision 0-1

Note

Internationalized strings are in the following format: [[vendor]] . If you are specifying
strings within the pkgi nf o locale directory, then do not specify adomain. The Qube 3
architecture specifies the domain for you. pkgi nf o locale strings cannot include locale tags
within locale tags. You can include local e tags that refer to other domains.

Package files have the following structures. Figure 1 shows the package file structure.

Figure 1 Package File Structure
—— packing_list

| pkginfo "C‘
- .
SCHIpTS —pre-install 'I‘\“j

—post-install Efj
—pre-uninstall Ejj

—post-uninstall h
——RPMS 't_‘i

——SRPMS h

See Figure 6, Module File Hierarchy, on page 15 for a more complete file hierarchy.

Note

Thepacki ng_l i st format for packagesis very similar to the package part of the
package_| i st update server packing list. You can use them interchangeably with the caveat
that some fields are unused. For example, the update server information usesthe si ze field.
The packing list uses RPM, SRPM, and f i | eNane.

The following features are only used by software update notification mechanism (BlueL inQ):
* Si ze (inbytes)
* InfoURL
* Location
* PackageType

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 10 of 16

Developer Technical Note

==d) Sun Cobalt

The following fields are only used by actual package installation mechanism:
¥ RPM
¥ SRPM
¥ Options

July 2001
DTN-14, Revision 0-1

9.1 Package Dependency Model

The dependency model alows you to restrict packages to particular Cobalt products, for example, the Qube 3.
You can also include dependencies on other software packages. Finally, you can declare old packages
obsolete.

The format for dependency requires that each dependency is on a separate line with alabel denoting the type
of dependency. The Qube 3 architecture offers three types of dependency information:

* Product: Cobalt Product Dependency such that the package will install if other software products that
are needed are not already installed. These are checked by product ID, for example 4000WG. You can use
a specific product, particular version, or you can use a Perl regular expression here.

* Package dependencies:

¥ Depend: Nornal package dependency based on the version nunber
being less than (<), equal to (=), or greater than (>) the
ver si on nunber specified.

¥ Visibl eDepend: Visible dependency: same as Depend but is only
useful for the software update nechani sm The packages that do
not neet dependenci es behave identically to the Depend in all
ot her manners to new or update packages despite the fact that
the package can t be installed.

» (bsol et es: Obsoletes packages name or name and optional version, less than (<), equal to (=), or
greater than (>) the version number specified, which removes information about other packages of that
name or version number specified.

10 Information for Installing Stand-alone Packages

The following are used in the actual package installation process but not in update server-supplied
information. They are not used for the update server pkgi nf o.

* RPM
* SRPM
* Opti ons (in acomma-separated list) include:
¥ reboot
¥ refreshui
¥ refreshcce
¥ uninstallable

 Thesefields are used to provide information and are included in the actual package aswell as provided by
the update servers:

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 11 of 16

Developer Technical Note

==d) Sun Cobalt

» Package identification

July 2001
DTN-14, Revision 0-1

¥ Name and nanet ag
¥ Version and versionTag
¥ Vendor and vendor Tag
 Description
¥ shortDesc
¥ | ongDesc
* License information
¥ License
¥ Splash
» Category
These fields are found only in update server package:
* Si ze (in bytes)
e PackageType: conpl et e or updat e
* Location

« | nf oURL: a pop-up window appears when the user clicks the magnifying glass

Figure 2 New Software Installed
u A & 2~ m @9 < & B P
Back r Faload Havwe Swirch Helicaps i1 Frimt Becerily Shep Siop
Loxation: M liep 7 fimase 151 ook H o 432 e Sl ® php Frostsr st | @5 wuat'c Fvtate

Bovceneo vt Breto Brown Brovwrages Broerisd Hoaowsr Bowvarna Bcoan mawers e

M S ol bwir e

Upial e
Inslaled 5ollware

Hellinga

Ires =l

I3 7 Warsion 7 Vanckry - "
4 mE " aTion 7 Wik Dlsmpr Dl
2 GueiTealPlgd 1.0 Ca bt GubeiTasi 4 Q..
S | At a3 Knoe i 4. 2w pli e daba profechien by provd dineg aubemat ed q

SEEE i il P Ly

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 12 of 16

Developer Technical Note

==d) Sun Cobalt

« If you click on the magnifying glass, you see the information shown in Figure 3, which corresponds to the
information in Table 3, “Package List Format,” on page 8.

July 2001
DTN-14, Revision 0-1

Figure 3 New Software Installation Details

Ulpdates
Inakslled Sallwere

JubeITesiFigd

¥ ersien Lo
Seltings ¥ e o Cobal
Copdghl il
[hern gt or Cpubec Tast 4
Laacshior hitp Meadnan | cobell comdqube Resmple plg,
HzeME) 0.3
L' Rl b 2]1]
O i iodried il Pk o Cabah OF = &0

10.1 Software Update Server

Note
If thei nf oURL file exists, it displays a popup window and will not install the actual package.

The BlueL inQ tab on the Qube 3 has an Updates menu. This page lists available software with the following
information.

* Update server-provided information (name, vendor, locale, description)
* Pop-up information. | nf oURL displays the URL to be passed the Qube's serial number

 The package checksfor an | nf oURL. If one exists, the page referenced by the | nf oURL appears. If not,
the package presents the license information, and installs after the user accepts the license agreement.

When users click on Install Details, the Qube 3:
» Displaysthe splash page if thereis one or displays alicense agreement in standardized license format.
* Beginsinstallation

When the user begins installation, these events occur on the Qube 3:

« It checks for a signature and attempts to authenticate it, if oneis present. If the signature cannot be
authenticated, a message is displayed letting the user know that the signature check failed.

* It runs the preinstallation script.

* It installs the Redhat Package Modules (RPMs.

Note

Cobalt Networks uses Redhat Package Manager (RPM) files because applications are easy to
manage if they are installed using RPM utilities. For details on creating *.rpm files (also

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 13 of 16

Developer Technical Note

==d) Sun Cobalt

known as “redhat package module’ files), see Maximum RPM, by Marc Ewing and Erik
Troan. Maximum RPM is the definitive technical reference for the RPM packaging system; it
provides information on RPM's history, usage, and internals from both the user and packager
perspectives. Also, seehtt p: / / ww. r edhat . comi for the most up-to-date information about
RPM technology.

July 2001
DTN-14, Revision 0-1

* It runsthe postinstallation scripts.
* It reboots or refreshes, if those options are set.
Figure 4 shows the Update Server page.

Figure 4 Update Software Installed

rinkallad Salbwern
Settings W_

w hame s Vesono Veno Deacipian :i‘f_l_'h
O CabedTestPeg: 11 Cabek CubedTes 3 Q

p DSl 30 i bl i ol 05 L ki & q
£ el gl e FX | [, 1 | Cordhall 15 Uipdat e Q.

¥ XS padalie K | Cobal This pacicaps i omup dels for Cabelt O5 Q,

If you click on the magnifying glass, you see the information shown in Figure 5, shown in

Figure 3, which corresponds to the information in Table 3, Package List Format, on page 8.
Figure 5 Update Software Installation Details

COoOBALT

oW o oE o

Héw 5ollware

P o Crabe ¥ Tea g3
Instaled 5oflware W i B [
Heltinga P e Cofsall
. opymght FopmEkt
sl phimy Drabe Test 3
Lol I Maadrian | eobalf comigubedsaraple plg;
Sia pAH] 0. 163
rurcdella ble Ho
s pesmidind Paclongess Cobelt O = &0

11 Development Details
Modules expect the following auxiliary support from the Qube 3 development toals:

* SAUSALI TQ devel / nodul e. nk for all the Makefi | e rules.

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 14 of 16

Developer Technical Note

==3 Sun Cobalt

DTN-14, Revision 0-1

* SAUSALI TQ bi n/ nod_r pni ze for the RPM specification file generator.

Figure 6 presents the module file hierarchy.

Figure 6 Module File Hierarchy

Makefile h
Constructor
_|—serviceC0nstEju:<{or.pl

Destructor

serviceDestructor.pl

glue E:i
am [ﬁ,

service.conf

conf
service.conf

—|—_handlers m
addservice.pl

delservice.pl

modservice.pl

schemas L_
sevice.schema

locale [°
C oy
|— service.po

SIC [?1

Makefile
ServiceHelper m
— Makefile
—— serviceHelper.c
— serviceHelper.h
—— serviceHelper.sh
v Continued on next page.

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 15 of 16

Developer Technical Note

==d) Sun Cobalt

July 2001
DTN-14, Revision 0-1

templates L,

packing.list.tmpl
—— rpmdefs.tmpl
spec.tmpl

ui L‘:.l

| menu E'j

| serviceRoot.xml
L serviceAdmin.xml
L serviceUser.xml

web L,
serviceSettings.php
serviceSettingsHandlers.php

Sun Cobalt™, Sun Microsystems, Inc., Server Appliance Business Unit 16 of 16

	1 Overview
	1.1 Audience

	2 What is a Package File
	2.1 Using BlueLinQTM Technology

	3 About the Application Module
	4 Naming Your Application Module
	5 Building a New Service Module
	6 Making your Application into a Package
	7 How to Install your Package File on the Qube 3
	8 Installation Process
	8.1 Choices for the Installation Process

	9 Package Structure
	9.1 Package Dependency Model

	10 Information for Installing Stand-alone Packages
	10.1 Software Update Server

	11 Development Details

