

The Qube 3 Software Architecture Developer’s
Guide

Version 1.0

Sun Microsystems, Inc., Sun Cobalt Server Appliances.

ii Contents

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights
reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described
in this document. In particular, and without limitation, these intellectual property rights may include one or more of the
U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in
the U.S. and other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying,
distribution and decompilation. No part of the product or of this document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, Java Script, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, and the Sun
Cobalt Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

For a complete listing of the software used within the Sun Cobalt Qube 3 server appliance, and the terms under which
it can be distributed, refer to the Sun Cobalt Web site at http://www.cobalt.com. The Sun Cobalt Qube 3 server
appliance includes software developed by the Apache Group for use in the Apache HTTP server project (http://
www.apache.org/). The Sun Cobalt Qube 3 server appliance also includes Majordomo, a package for managing
Internet mailing lists. The latest version of Majordomo can be obtained from ftp://ftp.greatcircle.com/pub/majordomo/.

Sendmail is a trademark of Sendmail, Inc.

Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 États-Unis. Tous
droits réservés.

Sun Microsystems, Inc. détient des droits de propriété intellectuelle sur la technologie réunie dans le produit qui est
décrit par ce document. Ces droits de propriété intellectuelle peuvent s’appliquer en particulier, sans toutefois s’y
limiter, à un ou plusieurs des brevet américains répertoriés à l’adresse http://www.sun.com/patents et à un ou
plusieurs brevets supplémentaires ou brevets en instance aux Etats-Unis et dans d’autres pays.

Contents iii

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la
copie, la distribution et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous
aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaScript, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, et le logo Sun
Cobalt sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company,
Ltd.

Pour une liste comple`te du logiciel utilise' dans le mini-serveur Sun Cobalt Qube 3, et les conditions dans lesquelles il
peut e^tre distribue', voir le site Web de Sun Cobalt a` http://www.cobalt.com. Le mini-serveur Sun Cobalt Qube 3
contient du logiciel de'veloppe' par le Groupe Apache pour le projet de serveur Apache HTTP (http://www.apache.org/
). Le mini-serveur Sun Cobalt Qube 3 contient e'galement le logiciel Majordomo pour la gestion de listes d'adresses
Internet. La dernie`re version de Majordo peut e^tre obtenue de ftp://ftp.greatcircle.com/pub/majordomo/.

SendMail est une marque déposée de SendMail, Inc.

LA DOCUMENTATION EST FOURNIE “EN L’ETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR
LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE
MARCHANDE, A L’APTITUDE A UNE UTILISATION PARTICULIERE OU A L’ABSENCE DE CONTREFAÇON.

iv Contents

Acknowledgements . xiv

Chapter 1 Introducing The Sun CobaltTM Qube 3 Software Architecture

Introduction . 1–1
Audience . 1–3

About this Book. 1–3
Related Documents . 1–4
Document Roadmap. 1–4

Conventions Used in this Guide . 1–5
Typographical Conventions . 1–5
Programmatic Conventions . 1–5

Terminology . 1–6

Chapter 2 About The Qube 3 Software Architecture

The Appliance Concept . 2–2
The User Interface Defines the Appliance. 2–3
Navigating Around. 2–3
Building Pages . 2–3
Ideas Behind UIFC. 2–4
User Interface with Style . 2–5
Built-in Internationalization. 2–5
Abstraction of the System into Objects . 2–5
Storing the Objects. 2–6
Manipulating the Objects . 2–7
Extending the Objects . 2–8
Watching for Changes . 2–9
Actuating the Changes . 2–10
Modularity – Doing Your Own Thing . 2–10
What CCE is Not . 2–10

Chapter 3 User Interface

How the Navigation System Works. 3–2
XML Elements. 3–2
Navigation Manager. 3–4
Adding a New Navigation Node . 3–6

Using Unique Names . 3–7
Building Pages . 3–7

A Further Example . 3–8

Contents v

The User Interface Style . 3–10
How Styles Work . 3–10
Changing the User Interface Style . 3–10
Making Other Style Changes . 3–11

Chapter 4 Using i18n and l10n in The Qube 3 Software Architecture

i18N: A World Tour . 4-1
Terminology. 4-1

How Internationalization Works . 4-2
Using Domains, Tags, and Locales . 4-3

Domains . 4-3
Tags . 4-3
Locale. 4-4
How Strings Are Added to the System . 4-4

Using Interpolation . 4-5
Interpolation Rules. 4-5

The i18n Interface . 4-6
The i18n C Language Interface . 4-7

The i18n PHP Interface . 4-10
Object Methods . 4-11

Internationalization Example. 4-15

Chapter 5 Introducing the Cobalt Configuration Engine

The Cobalt Configuration Engine (CCE) . 5-2
Basic Concepts. 5-2
How Data Flows Through CCE. 5-3

The CCE Daemon (CCEd) . 5-4
CCEd Command-Line Parameters. 5-5

The Cobalt System Configuration Protocol (CSCP) 5-5
The Cobalt Object Database (CODB) . 5-6
Schemas . 5-6

How to Read XML Syntax Descriptions . 5-6
Whitespace . 5-6
Symbols . 5-7
Elements and Content. 5-7
Attributes . 5-7
Comments. 5-8
Escape Sequences. 5-8
Sample XML . 5-8

vi Contents

Schema Syntax. 5-9
Syntax: SCHEMA . 5-9
Syntax: CLASS . 5-10
Syntax: PROPERTY . 5-10
Syntax: TYPEDEF . 5-12

Sample Schema Definition File . 5-12
Handler Registration . 5-13

Events. 5-14
Handlers . 5-15
Stages . 5-15
File Naming . 5-15
Sample Handler Registration File . 5-16

CCE Libraries . 5-16
C. 5-16

Dependencies and Headers. 5-17
Datatypes . 5-17
Functions . 5-19

Perl . 5-31
Module . 5-31
Creating a New Object . 5-31
Methods . 5-32

Public Methods for CCEClient (PHP) . 5-40

Chapter 6 Making Qube 3 Software Architecture-Aware Applications

Making Qube 3 Software Architecture-Aware Applications 6-1
About the Application Module . 6-2
Naming Your Application Module . 6-3
Building a New Service Module . 6-3

Making your Application into a Package . 6-4
Introducing Slush Barn, a “Real-World” Application 6-7
How to Install your Package File on the Qube 3 . 6-9

Installation Process . 6-11
Choices for the Installation Process . 6-12

Package Structure . 6-12
Package Dependency Model . 6-17
Information for Installing Stand-Alone Packages 6-17
Software Update Server . 6-20
Development Details . 6-22

Contents vii

Appendix A User Interface Foundation Classes

HTML Generation .A-1
Error Checking. .A-1
Reusable Code .A-2
Common Pitfalls .A-2

AddButton .A-3
BackButton .A-3
Bar .A-4
Button .A-5
CancelButton .A-8
CompositeFormField .A-9
CountryName. .A-11
DetailButton. .A-11
DomainName. .A-12
DomainNameList. .A-12
EmailAddress. .A-12
EmailAddressList. .A-13
FileUpLoad .A-14
Form. .A-15
FormField .A-18
FormFieldBuilder .A-22
FullName .A-27
GroupName .A-27
HTMLComponent .A-27
ImageButton .A-28
ImageLabel .A-29
Integer .A-30
IntRange. .A-32
IpAddressList. .A-33
Label .A-33
Locale .A-35
MacAddress .A-35
MailListName .A-36
ModifyButton .A-36
MultiButton .A-36
MultiChoice .A-39
MultiFileUpload .A-42
NetAddress. .A-43
NetAddressList .A-43
Option .A-43

viii Contents

Page .A-46
PagedBlock .A-50
Password .A-56
RemoveButton .A-57
SaveButton. .A-58
ScrollList .A-59
SetSelector .A-69
SnmpCommunity .A-72
StatusSignal .A-72
Stylish .A-74
Stylist .A-74
TextBlock .A-77
TextField .A-79
TextList .A-80
TimeStamp. .A-80
TimeZone. .A-81
UninstallButton .A-82
Url .A-82
UrlList .A-84
UserName .A-86
UserNameList .A-86
VerticalCompositeFormField .A-86

Appendix B Utility Classes

ArrayPacker .B-1
Error .B-3
ServerScriptHelper. .B-5

Appendix C About Style

Style Files .C-1
Supported Styles .C-2

Boolean .C-2
Color. .C-3
Positive Integer .C-3
URL .C-3

Common Properties .C-3
backgroundColor .C-3
backgroundImage. .C-3
borderThickness. .C-4
color .C-4

Contents ix

fontFamily .C-4
fontSize .C-4
fontStyle .C-4
fontWeight .C-5
textDecoration .C-5
width. .C-5

Styles .C-5
Bar .C-5
emptyImage .C-6
endImage .C-6
filledImage .C-6
startImage. .C-6
Button. .C-6
CancelButton .C-7
Label. .C-7
ModifyButton. .C-7
MultiChoice .C-8
Page .C-8

PagedBlock .C-9
dividerHeight .C-10
icon. .C-10
Password .C-10
RemoveButton .C-10
removeIcon. .C-11
SaveButton. .C-11

SetSelector .C-11
addIconGray. .C-11
removeIcon. .C-12
removeIconGray. .C-12

ScrollList .C-12
borderThickness. .C-13
borderColor .C-13
sortAscendingIcon .C-13
sortDescendingIcon .C-13
sortedAscendingIcon .C-14
sortedDescendingIcon .C-14

x Contents

StatusSignal .C-14
failureIcon .C-14
newIcon .C-15
noneIcon. .C-15
normalIcon .C-15
oldIcon .C-15
problemIcon .C-16
repliedIcon .C-16
severeProblemIcon. .C-16
successIcon. .C-16

cListNavigation .C-17
infoHeight .C-17
tabHeight .C-17

collapsibleList .C-17
borderThickness. .C-18
collapsed Icon .C-18
expandedIcon .C-18
selectedIcon .C-18
unselectedIcon .C-19
info .C-19
downIcon .C-19
downIconGray .C-19
typeIcon .C-20
upIcon. .C-20
upIconGray. .C-20
tab. .C-20
logo. .C-21
selectedImageLeft .C-21
selectedImageRight .C-21
unselectedImageLeft .C-21
unselectedImageRight .C-22

Appendix D Base Data Types

Scalar .D-1
Word. .D-1
Alphanum. .D-1
Alphanum_plus .D-2
Int .D-2
Uint. .D-2
Boolean .D-2

Contents xi

Ipaddr .D-3
Network .D-3
Email Address .D-3
Netmask .D-4
Fqdn .D-4
Hostname .D-4
Domainname .D-5

Appendix E Cobalt System Configuration Protocol

Example Headers . E-2
Messages . E-3
CSCP Command Summary . E-5

Common Syntax Definitions . E-6
CSCP Commands . E-6

The AUTH Command . E-6
The AUTHKEY Command . E-7
The ENDKEY Command . E-7
The CREATE Command . E-7
The DESTROY Command . E-8
The SET Command . E-8
The GET Command. E-8
The COMMIT Command . E-9
The NAMES Command. E-9
The CLASSES Command . E-9
The FIND Command . E-10
The WHOAMI Command . E-11
The BYE Command. E-11

CSCP Handler Extensions . E-12
The BADDATA Command . E-12
The INFO Command . E-12
The WARN Command. E-13

Built-in Properties of Objects . E-13

Appendix F CCE Class Definitions

Programming Conventions . F-2
CCE Class Definitions. F-2

System . F-2
Network . F-3
Route . F-3
Workgroup . F-3

xii Contents

Workgroup Defaults. F-4
User . F-4
UserDefaults. F-5
MailList . F-5
User.Email . F-6
System.Email . F-6
System.FTP . F-7
System.Snmp . F-7
DhcpParam. F-7
DhcpStatic . F-8
DhcpDynamic . F-8

Contents xiii

Acknowledgements

I would like to acknowledge the following people who have been essential to writing this
book: Tim Hockin, Jonathan Mayer, Adrian Sun, Mike Waychison, Will DeHaan, and
Kevin Chiu. Thanks also to Karina Eichmann, Gordon Garb, and Denise Stone.

NOTE:

The Security and Active Monitor chapters will be fully covered in the
next version of this book. This is the 1.0 version of this book and it matches the

.76 version of the CCE software release.

xiv Contents

Chapter 1

Introducing The Sun Cobalt

TM

 Qube 3 Software
Architecture

Introduction

Sun Cobalt

TM

 completed its first Web server appliance software architecture in 1998 and

began delivery of Sun Cobalt Qube

TM

 appliances and Sun Cobalt RaQ

TM

 servers that same

year. The Web appliance market has taken off. Today, Sun Cobalt RaQ servers host hundreds

of thousands of Web sites in data centers around the world. Sun Cobalt Qube 3 appliances

provide basic Web services for thousands more small businesses and educational institutions.

Software developers and service providers now view the Web as the medium for delivering

services. They increasingly see Web server appliances as the vehicle for cost effectively and

easily delivering these services to the edge of their customers’ networks.

Chapter Contents

Introduction

Audience

About this Book

Related Documents

Document Roadmap

Conventions Used in this Guide

Typographical Conventions

Programmatic Conventions

Terminology

1—2 Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

As

appliances

, these products are fundamentally more cost effective and easier to use than

‘pre-Internet’ general-purpose servers. Just as most consumers receive television

entertainment through set-top box appliances on the edge of cable networks, millions of

businesses, previously excluded from the information technology market place, will receive

services through Web-enabled appliances attached to the Internet.

Sun Cobalt recognized from the start that the user interface and underlying software

architecture for these Web appliances must be designed specifically for this task. Sun Cobalt

has worked with leading network providers, including several of the world’s leading ISPs and

network service providers, to

appliantize

 their Web services. Their requirements are at the

center of Sun Cobalt’s second-generation software architecture, which is described in this

developer’s guide.

The Sun Cobalt Qube 3 software architecture (Qube 3 software architecture) is specifically

designed for delivery of services through the Web model. This model allows services, hosted

on the appliance, to deliver content to many users simultaneously through a graphical user

interface.

The Qube 3 software architecture, code named

Sausalito

, is designed to provide a superb

developer platform, with the following goals in mind.

•

Provide an extensible architecture enabling third-party developers to customize,

modularize, and implement services quickly. Qube 3 Software Architecture interfaces

are documented in this guide, including tools for tuning the user interface and

interfacing with the built-in configuration database. The user interface also includes

such features as a software update indicator and single-button install and delete

capabilities.

•

Provide an easy to understand environment for non-technical users. The Qube 3

software architecture masks the complexity of its underlying software and is intended

to provide the framework for maintenance-free services.

•

Use open standards for quick development time and strong security. The Qube 3

software architecture is designed to run on top of Linux and, in addition to its own

interfaces, uses a number of standard services and interfaces like Apache and LDAP.

•

Provide flexibility to localize user interfaces into multiple languages quickly. The

Qube 3 software architecture includes a language library for all localized data.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—3

Audience

The audience for this document includes developers who create hardware or software

applications that run on the Qube 3 Software Architecture, Value Added Resellers (VARs),

and others who want to customize the Qube 3 Software Architecture-based systems to fit their

requirements.

About this Book

This book contains the following sections:

Chapter 2, “About The Qube 3 Software Architecture,” provides a high-level tutorial of the

components that make up the Qube 3 Software Architecture.

Chapter 3, “User Interface,” explains how the user interface works with code samples and

examples of how to change the style.

Chapter 4, “Using i18n and l10n in The Qube 3 Software Architecture” describes how to

internationalize and localize the Qube 3 Software Architecture.

Chapter 5, “Introducing the Cobalt Configuration Engine” describes the interaction between

the underlying software for the Qube 3 Software Architecture.

Chapter 6, “Making Qube 3 Software Architecture-Aware Applications,” describes the file

structure you must use to create an application that runs on the Sun Cobalt Qube 3 server

appliance.

Appendix A, “User Interface Foundation Classes” lists the methods in the User Interface

Foundation Classes (UIFC).

Appendix B, “Utility Classes” lists the methods for the utility classes.

Appendix C, “About Style,” lists the default styles used in Qube 3 Software Architecture.

Appendix D, “Base Data Types” lists the base data types used in Qube 3 Software

Architecture. You should be aware of these data types so that your software does not

overwrite them.

Appendix E, “Cobalt System Configuration Protocol” describes the CSCP protocol.

Appendix F, “CCE Class Definitions” lists the properties of CCE classes.

1—4 Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Related Documents

Information about the Sun Cobalt Qube 3 Server Appliance Manual is available at

http://www.cobalt.com/support/resources/manuals.html

. Information about

Qube 3 Software Architecture is also available at

http://www.cobalt.com/products/

index.html

.

Document Roadmap

This roadmap tells you where to find information for specific tasks.

Table 1–1

Documentation Roadmap

Task Where to find information

Adding a new menu item “Adding a New Navigation Node” on page 3–6

Changing the logo “Making Other Style Changes” on page 3–11

Changing the background color “Changing the User Interface Style” on page 3–10

Internationalizing your application “Using i18n and l10n in The Qube 3 Software

Architecture” on page 4–1

Adding a new service “Building a New Service Module” on page 6–3

Working with the UIFC classes Appendix A

Working with the Utility classes Appendix B

What are the base classes for Qube 3 Software

Architecture

Appendix C

Working with the Object Database (ODB) Appendix D

CSCP Libraries Appendix E

What are the CCE class definitions Appendix F

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—5

Conventions Used in this Guide

Typographical Conventions

Bold

 is used for emphasis, for example:

Each UIFC page should have

one and only one

 Page object.

Bold

 is also used for words found in the user interface, for example:

test.xml

 is shown adjacent to

Style

.

Italic

 font is used for variables, for example:

require ::=

string

Italic

 font is also used for new terms when they are first used, for example,

these

widgets

 are manipulated from a PHP script by the developer.

Courier

 is used for program names and code, and Web resources, for example:

CCE Auth

 command returns NULL for failure or a session key for success.

char *cce_auth_cmnd

http://www.cobalt.com/support/resources/manuals.html

Programmatic Conventions

The class definitions use the following conventions:

•

All class names have the first character capitalized. For example,

System

. If they have

more than one word, the first character of all words is capitalized. For example,

MailList

.

•

Namespace

 names follow the same rule as class names.

•

All property names start with an all lowercase first word. If a property name has more

than one word, the first characters of the second word onwards are capitalized. For

example,

gateway

 and

stylePreference

 are valid property names.

1—6 Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Terminology

Qube 3 Software Architecture has its own unique terminology:

Cobalt Configuration Engine (CCE)

: A general name for the entire configuration

architecture.

Cobalt System Configuration Protocol (CSCP)

: The protocol that connects the CCE client

to the session manager and the Cobalt Object database. CSCP connections provide object-

database functionality and execute handlers as necessary.

Event

: A change in a property of an object within the database.

Client

: A program using CSCP to request or change information.

Handler

: A program called by CCE to affect an event.

Cobalt Configuration Engine daemon (CCEd)

: The server process that handles incoming

connections and signals.

Chapter 2

About The Qube 3 Software Architecture

This chapter provides a tutorial-style overview of the Qube 3 software architecture. It

describes the basic concepts, the issues addressed in creating this appliance architecture, and

the solutions implemented to address them.

Chapter Contents

The Appliance Concept

The User Interface Defines the Appliance

Navigating Around

Building Pages

Abstraction of the System into Objects

Storing the Objects

Manipulating the Objects

Extending the Objects

Watching for Changes

Actuating the Changes

Modularity — Doing Your Own Thing

What CCE is Not

2—2 Chapter 2: About The Qube 3 Software Architecture

The Appliance Concept

When designing software for a general purpose server, the designers must put as few

restrictions on flexibility as possible. However, an appliance does not have this restriction. A

Sun Cobalt

 appliance is designed with a single goal in mind: providing a full range of services

through a single user interface, while keeping the ease of use of household appliances. This

goal enables us to narrow the scope of the software and consequentially tightly integrate the

software into the system.

The Qube 3 software architecture is an answer to the appliance concept. The Qube 3 software

architecture allows

Sun Cobalt

 to provide a single back-end mechanism for monitoring and

manipulating the system software. Through this mechanism, a very simple user interface can

operate, while keeping the details of the back-end system logically separate.

This separation of interface and implementation is a cornerstone of reusable and reliable

software design. This allows developers to have a stable exported interface that can be used in

their applications for complete integration into the

Sun Cobalt

 environment. This is one of the

major goals of the Qube 3 software architecture.

Figure 2–1 provides a basic view of the Qube 3 software architecture. The interface provides

the glue between the user interface and back end.

Figure 2–1 Overview of the Qube 3 software architecture

Chapter 2: About The Qube 3 Software Architecture 2—3

The User Interface Defines the Appliance

Appliances make complex systems very easy to use. The user interface plays a strong role in

defining the appliance. The Qube 3 software architecture provides the foundation to build

Web-based user interfaces on the user interface layer. This layer communicates with users and

routes information to and from the back-end. There are several components in this layer: the

navigation manager, User Interface Foundation Classes (UIFC), and

Stylist

.

The Qube 3 software architecture was designed to meet internationalization requirements.

The Qube 3 software architecture supports users at different locales by working with

European and Asian languages. The user interface layer uses an internationalization library to

handle this requirement. For example, when the user interface needs to display “Welcome” to

users who speak German, it asks the internationalization library to get the translated string

“Willkommen” to display to users.

Navigating Around

The navigation manager component is designed to provide basic navigation capabilities to

user interfaces. The idea is to separate data that defines the site map and the navigation

managers that walk through the map. On a site map, each node denotes a page on the user

interface and each page can have multiple widgets. Information about the nodes are stored in

special files.

Given a site map, it is up to navigation managers to determine how to walk through them.

Different navigation managers can walk through the same site map differently. Some

navigation managers provide a step-by-step walk through while others show the whole map as

a tree structure so that users can pick the right node instantly.

Building Pages

The Qube 3 software architecture provides many utility libraries and UIFC as a widget set on

which you can build user interface pages. One of the goals of UIFC is to provide consistency

among different pages on a user interface. This is extremely important for the interface’s ease

of use. For example, UIFC fields that represent boolean selections always look the same.

Otherwise, boolean selections can be represented as a checkbox, two radio buttons, or a

change-state-button.

2—4 Chapter 2: About The Qube 3 Software Architecture

UIFC is object-oriented. Each widget has corresponding classes. Also, UIFC is currently

implemented in PHP. Developers must have a basic understanding of object-oriented

programming and PHP before examining UIFC. PHP is a very easy-to-learn and versatile

scripting language designed to build Web pages.

HtmlComponentFactory is a UIFC class that constructs widgets and talks to the

internationalization library. The basic task of this class is to instantiate UIFC widget classes in

common ways and give them parameters of the desired locale. This is the first class to

understand within UIFC.

ServerScriptHelper is a utility class that simplifies page building. Its main job is to

communicate with CCE for authentication and to get user preferences. It also provides

methods to make page building easy.

Ideas Behind UIFC

UIFC is a layer above user interface implementation mechanisms, such as HTML. When we

think in HTML, we think at the level of checkbox, radio button, select field, and text field.

When we think in UIFC, we think at the level of boolean selection, option selection, set

selection, and typed inputs. HTML is for implementation; UIFC is for design concept. UIFC

frees UI designers from very low-level implementation details.

UIFC is designed to provide consistency for user interface. Take a simple example: one UI

designer can use a checkbox to represent an on/off selection on one page, while another

designer can use two radio buttons, one for on and one for off, to represent the same concept.

Such discrepancies make a user interface hard to learn and use. UIFC provides a single widget

for boolean selection, so such concepts are always represented consistently.

UIFC improves portability. Especially for Web-based user interfaces, portability across

multiple browser platforms has always been a trouble spot. Because UIFC users express

things as concepts, UIFC can choose the appropriate implementation through platform-

specific tuning or lowest common denominator approaches.

Sometimes, UIFC can be restrictive. For example, what if UIFC expresses boolean as a

checkbox while a UI designer uses radio buttons for the same concept? To provide this bit of

flexibility, pages using UIFC can be mixed with HTML and JavaScript; however, UIFC users

should be cautious when mixing UIFC and other tools.

Chapter 2: About The Qube 3 Software Architecture 2—5

User Interface with Style

There are lots of style properties on a user interface. A Web user interface includes fonts, font

size, color, images, alignment, and other properties. UIFC support style properties, which are

stored in special files. UIFC widgets parses through these files to get the right style to display.

The Qube 3 software architecture allows multiple styles to coexist on the system and allows

users to choose ones they prefer. Styles are pretty much like “skins” in some applications.

Built-in Internationalization

Internationalization is built into The Qube 3 software architecture and supported through an

internationalization library. The Qube 3 software architecture users often refer strings by their

references rather than the actual strings. This way, the actual string can be fetched from the

string catalog based on the locale preference of the user who reads the string. The Qube 3

software architecture users can also set locale-specific properties. For example, when an input

field should only be displayed for Japanese but not for other languages, we can introduce an

inputField property and set it to true only for Japanese. Of course, the code that manages

this field must be made aware of this property.

The Qube 3 software architecture is designed such that an object’s representation resides only

on the user interface layer. Developers should not be surprised that anything below the user

interface layer only passes references instead of the actual strings or other locale-sensitive

resources. When the user interface gets the reference and decides to use it, the

internationalization library is then called to resolve it.

Abstraction of the System into Objects

The first step towards separating the interface from the implementation is to separate the data

from the process. System data, such as configuration options and users, can become abstract

groupings of data or objects. These objects are self-contained, dictating only the information

necessary to recreate themselves. An application can define a class or data structure to enable

the system to know about and manipulate its data.

2—6 Chapter 2: About The Qube 3 Software Architecture

This provides developers a flexible way to define new configuration items to the system, as

well as a convenient and single mechanism by which to read all system configuration data.

Figure 2–2 shows the addition of classes and objects.

Figure 2–2 Adding Classes and Objects to The Qube 3 software architecture

Storing the Objects

Once we have well-defined objects that can accurately represent the system, we need to define

how and where to store them and how to retrieve and modify them. Unlike reading

configuration files, such as /etc/passwd or httpd.conf, to determine the state of the

system, a good abstraction should provide a single, flexible way to access all system

configuration data.

The Cobalt Object Database (CODB) is provided as a place to store objects. It is not a

database in the sense of commercial relational databases designed to run a corporate

enterprise, but instead stores the known state of the system. CODB acts as a buffer between a

user interface and the system itself.

Back End

User
Interface

API

Classes
Objects

Chapter 2: About The Qube 3 Software Architecture 2—7

Objects can be stored, retrieved, modified, and destroyed, all without the user interface having

to know about the details of any given application configuration mechanism. Figure 2–3 adds

the Cobalt Object Database (CODB).

Figure 2–3 Adding CODB

Manipulating the Objects

Now that we have objects that can be stored, created, and destroyed, we need to define a

mechanism by which to do these things. In order to provide a manageable and accountable

access method, Sun Cobalt has defined the Cobalt System Configuration Protocol (CSCP),

which connects clients to the Cobalt Configuration Engine (CCE). CCE is the process that

implements CODB.

User
Interface

API

CODB

2—8 Chapter 2: About The Qube 3 Software Architecture

CSCP provides primitives to read, write, create, destroy, and search for objects. To make

accessing CSCP easier, Sun Cobalt provides libraries in several common programming

languages, such as C, Perl, and PHP.

Figure 2–4 Connecting the UI to CCE and CODB

Extending the Objects

Now that application packages can export their configuration data via CODB classes, other

software packages can take advantage of this. Many times, an application package adds some

functionality to an existing object that did not exist in the base object. Consider an application

that provides some per-user configuration options. With CODB classes, it is easy to define a

class for this data. Now the UI can create an object of this class (an instance) whenever a user

is created and destroy the instance whenever a user is destroyed.

There is one more problem, however. A good abstraction of the object knows nothing of the

user interface and a good user interface engine knows nothing of what classes are available.

How do we associate this new per-user class with a user object?

User
Interface

CCE

CSCP

CODB

Chapter 2: About The Qube 3 Software Architecture 2—9

CODB provides the ability to extend a class with a namespace. A namespace is a set of

properties, like a class, that piggy-backs onto other classes. We can change our per-user class

into a user namespace. Now, whenever a user gets created or destroyed, the namespace goes

with it. We also solve the issue of association. We know our new namespace is associated with

user objects by its namespace association.

Watching for Changes

At this point, we have the Cobalt Configuration Engine (CCE) running a database (CODB)

that stores instances of classes and namespaces. This configuration engine understands the

CSCP protocol to affect changes on the CODB. How do the changes made to the CODB

become changes made to the system?

Application packages can register via configuration files to be notified when certain events

occur. The registration mechanism provides the ability for any software package to register

event handlers (or just handlers) on any class or namespace known to the system. Events

understood by the CODB are create events, destroy events, and modify events.

Now that we can register handlers, our software package can create a handler for any event for

which it is concerned. For example, if we need to add a user to our application’s access list,

we might register on the user-create event. When a user is created, our handler is invoked, and

we can do our specific task.

2—10 Chapter 2: About The Qube 3 Software Architecture

Actuating the Changes

When an event is triggered, CCE steps through the list of handlers for that event, and runs

each of them, in turn, until one fails, or there are no more handlers to run.

It is the responsibility of each handler to make the appropriate changes to the system

configuration to actuate the event.

Figure 2–5 Making changes to the system

Modularity – Doing Your Own Thing

At every stage of the Qube 3 software architecture, concern has been given to retain

modularity. It is the goal of the architecture to make adding and removing software packages

have no impact on the rest of the system. This principle should be adhered to as much as

possible.

What CCE is Not

CCE is not a generic data-store. It is not a place for applications to store their data. It is meant

to be a buffer between making abstract changes in the configuration of the system and those

changes happening on the system.

CCE is not a place to store user-interface definitions. CCE should know as little as possible

about any particular user interface implementation.

Handlers

CCE
Config
Files

CSCP

CODB
System

Configuration
Files

Chapter 2: About The Qube 3 Software Architecture 2—11

CCE is not a mechanism for a user interface to trigger system events. The user interface

should not rely on any knowledge of the handlers that are registered on an event.

CCE is not a replacement for other security mechanisms. While the Qube 3 software

architecture tries to be secure and cautious in all cases, it should not forego other security

methods.

CCE is not a replacement for a good backups. Much of the system’s data is stored in files on

the system, not in CODB. Protect your data and back up regularly.

2—12 Chapter 2: About The Qube 3 Software Architecture

Chapter 3

User Interface

The Qube 3 software architecture is Sun Cobalt’s first fully open programming interface. It is

designed to enable third-party developers to create applications that are seamlessly integrated

into the look and feel of the Qube 3 software architecture-based appliances. One of the layers

within the Qube 3 software architecture is the user interface, which enables you to:

• Manipulate navigation with navigation managers and site maps.

• Manipulate look-and-feel style.

• Build user interfaces pages that are consistent with the Qube 3 software architecture-

based systems.

Chapter Contents

How the Navigation System Works

Adding a New Navigation Node

Building Pages

The User Interface Style

How Styles Work

Changing the User Interface Style

3—2 Chapter 3: User Interface

How the Navigation System Works

The navigation system is a sub-system within the user interface that manages navigation

through site maps. The system consists of site maps and navigation managers.

The navigation system on the Qube 3 software architecture is a dynamic system. It is

generated from a set of files that define navigation nodes. By linking these nodes together, a

site map is formed. Users can construct site maps by adding and removing nodes. These site

maps are then interpreted by navigation managers. Whenever a user logs in to the user

interface, navigation managers use the site map to govern how the user navigates.

Each node on the navigation graph is defined in an XML file. You must have a basic

understanding of how XML works to use navigation. For XML information, see

http://www.sun.com/xml/.

Navigation-node XML files are located under the /usr/sausalito/ui/menu directory.

These files are very simple. It does not matter where or in what subdirectories these files are

placed. All graph related information is contained within the files. Directories can be used to

group these files into a more maintainable manner. To add a node, create a new XML file

under the directory. To remove a node, remove the file. Each XML file contains all the

information the navigation system needs to know about a node.

XML Elements

There are three elements navigation-node XML files can use. They are item, parent, and

access elements. Each of the files must contain one and only one item element. Each item

element contains zero or more parent elements. The parent elements can be viewed as

links from the children to the parent node. A collection of nodes and links together composes

a site map. Each parent element can have zero or more access elements.

With no access element, the parent link has no access control and anybody can traverse the

link. With one access element, access is granted if and only if this requirement is met. With

more than one access element, access is granted if any one of the multiple requirements are

met; this is an OR condition.

Chapter 3: User Interface 3—3

Table 3–1, Table 3–2, and Table 3–3 list possible attributes of these elements.

Table 3–1 Item Element Attributes

Name Type Description

id [a-zA-Z0-9_\-]+ id must be unique among XML files. Therefore, it is advisable to prepend package

or vendor tag to the id. See “Using Unique Names” on page 3–7.

label internationalizable

string

label is a short readable string that labels the node. Navigation managers can

display a list of labels for users to navigate to. The interpolate function of the I18n

module is used to internationalize this string.

description internationalizable

string

Labels can sometimes be too short. A description is used complement the label

in describing the node’s content. The interpolate function of the I18n module is

used to internationalize this string.

type string type is used by navigation managers to distinguish items. They can then act on the

items differently. Optional.

url URL as described in

RFC 1738,

internationalizable

This url points to the content page of this node. The interpolate function of the

I18n module is used to internationalize this string. Optional.

Table 3–2 Parent Elements Attributes

Name Type Description

id [a-zA-Z0-9_\-]+ This is the id of the parent node that is described in the item element.

order integer When there are several children nodes under a parent node, the navigation managers

might need to know which child to use first. The smaller the integer, the more

important the node is. Optional.

require string This is the access required to traverse the parent link. Optional.

Table 3–3 Access Elements Attribute

Name Type Description

require string This is the access required to traverse the parent link.

3—4 Chapter 3: User Interface

Navigation Manager

There are three navigation managers supported by the system currently. They are collapsible

list navigation, flow navigation, and single navigation. New navigation managers may be

added in the future.

Here is an example site map to illustrate how navigation managers work:

Node A has no parent

Node B’s parent is A

Node C’s parent is A

Node D’s parent is C and E

Node E has no parent

Node F has no parent

Node G’s parent is F

Node H’s parent is G

Node I’s parent is G and J

Node J has no parent

The site map looks like Figure 3–1.

Figure 3–1 Site Map

A F

B C
E G

J

D H I

Chapter 3: User Interface 3—5

The collapsible list navigation manager presents a site map in a collapsible list format and lets

users navigate by clicking on items on the list. Users can expand or collapse parents to show

and hide the children nodes, respectively.

To use the collapsible list, users need to supply the root node of the site. For example, using

the above site map as an example with A as root, the collapsible list will look like:

Item B

Item C

Item D

Note that the node A and E are not being shown. This is because node A is the root and there

is no path to descend down from the root to node E. The nodes F, G, H, I and J are not shown

either because they are on a separate branch.

The URL for collapsible list navigation manager is at /nav/cList.php. It needs a root

parameter that specifies the id of the root, such as

http://<ip>/nav/cList.php?root=<root>.

The flow navigation manager allows users to navigate forward or backward through a site

map. Conditional branches for forward are supported.

The root node needs to be supplied to the flow navigation manager and that becomes the first

step of the flow.

Take the above site map as an example with F as the root. Navigation starts at F. Users can

move forward to G. No moving backward is allowed on the root node. At G, users can move

backward to F or forward to either H or I. Moving to H or I depends on a condition check at

G. At H or I, users can move back to G or finish the navigation. Note that users at I cannot

move backward to J.

Conditional forward is supported by a JavaScript interface. At the node where a conditional

forward is necessary, that is, G in the above example, a getNextItemId()JavaScript

function must be specified in the content page. This function should return the id of the next

node when it is called with no parameters.

Error checking is supported. When an user wants to move forward, all the

submitHandler()s of all the form elements of the content page are called with no

parameters. The forward operation proceeds only if all the submitHandler()s return true. If

you use UIFC to build your content page, submitHandler()s are automatically defined.

3—6 Chapter 3: User Interface

During the forward operation, after error checking is done at the front end, the form on the

content page is submitted. The handler of the form submitted should tell flow navigation

manager if submission is successful or not. If successful, navigation moves to the next node.

Otherwise, it stays at the same node. To notify the navigation manager, the form handler

should return a page that sets the JavaScript variable flow_success to true or false, with true

indicating success. Note that this variable is automatically handled by the toHandlerHtml()

method of the ServerScriptHelper class.

The URL for flow navigation manager is at /nav/flow.php. The root parameter needs to be

supplied, such as http://<ip>/nav/flow.php?root=<root>.

Single navigation manager only supports one single node and does not allow users to navigate

into other nodes.

The URL for single navigation manager is at /nav/single.php. The root parameter needs

to be supplied, such as http://<ip>/nav/single.php?root=<root>.

Adding a New Navigation Node

The example below demonstrates how to add nodes to the user interface (UI). We will add two

nodes in the example. Figure 3–2 on page 3–9 shows the result of this addition.

helloMenu.xml

<item

 id="sample_helloworldmenu"

 label="Hello World App"

 description="This menu contains the Hello World application">

 <parent id="base_administration" order="100"/>

</item>

hello.xml

<item

 id="sample_helloworld"

 label="Hello"

 description="This item says hello to the world"

 url="/sample/hello/helloWorld.php">

 <parent id="sample_helloworldmenu" order="0"/>

</item>

Chapter 3: User Interface 3—7

Node sample_helloworldmenu is a child to node base_administration and node

sample_helloworld is a child of node sample_helloworldmenu.

Using Unique Names

You must use unique names for navigation nodes to avoid name conflicts. Sun Cobalt
recommends that you choose a vendor-specific name for your modules and create directories

with the vendor name. For example, if your company name was ivory, your XML files for the

account information page would be ivory_account.xml in the /usr/sausalito/ui/

menu/ivory directory.

Building Pages

Pages on The Qube 3 Software Architecture are built with PHP, because UIFC, the widget

classes, and other utility classes are currently implemented in this language. These classes the

foundation of The Qube 3 Software Architecture user interfaces and they are available to be

used by developers.

The object classes, called the UIFC, define objects such as buttons, lists, checkboxes, and

radio buttons. These widgets are manipulated from a PHP script by the developer and then are

automatically turned into proper HTML for display to the user. All the UIFC widgets have

been built with the concept of styles. This allows the look of the entire UI to change, with no

code changes. UIFC has also been designed to work seamlessly with internationalization,

commonly referred to as i18n. See Appendix A, “User Interface Foundation Classes” for a

complete reference for UIFC. See Chapter 4 for information on internationalization.

The utility functions provide pre-packaged functionality that is commonly needed by Web-

based UIFC applications. Utilities, such as conversions between strings and hashes, and

widget allocations are greatly simplified by utility functions. See Appendix B, “Utility

Classes” for a description of the utility classes. For information on Styles, see “The User

Interface Style” on page 3–10.

3—8 Chapter 3: User Interface

A Further Example

We’ve already shown some examples of adding a menu, so let’s put all the pieces together and

see how it looks. This example is expanded in subsequent chapters to show how to

internationalize your application, add handlers, and have it work with the Qube 3 software

architecture’s Active Monitor.

menu/helloMenu.xml

<item

 id="sample_helloworldmenu"

 label="Hello World App"

 description="This menu contains the Hello World application">

 <parent id="base_administration" order="100"/>

</item>

menu/hello.xml

<item

 id="sample_helloworld"

 label="Hello"

 description="This item says hello to the world"

 url="/sample/hello/helloWorld.php">

 <parent id="sample_helloworldmenu" order="0"/>

</item>

web/helloWorld.php

<html>

<body bgcolor="#ffffff">

<h1> Hello, World! </h1>

</body>

</html>

Putting all of these files together creates the Web page shown in Figure 3–2 on page 3–9.

Now, we can take advantage of the UI libraries. It might seem odd that the next example is, in

fact, longer than the non-UIFC version, but for a use as trivial as this, the overhead of UIFC

outweighs the benefits. When pages get longer and more complex, however, the benefits

dwarf any overhead.

Chapter 3: User Interface 3—9

web/helloWorld.php

<?php

// PHP file to display "Hello, World"

include("ServerScriptHelper.php");

$servhelp = new ServerScriptHelper();

$factory = $servhelp->getHtmlComponentFactory("base-am");

$page = $factory->getPage();

print($page->toHeaderHtml());

$label = $factory->getLabel("Hello, World!", false);

print($label->toHtml());

print($page->toFooterHtml());

?>

Putting all these files into place results in the screen shown in Figure 3–2.

Figure 3–2 Hello World in the Sun Cobalt Menu

3—10 Chapter 3: User Interface

The User Interface Style

How Styles Work

The UI styles are defined in Style definition files. The Style definition file contains all the

configurable items of the look and feel of UIFC’s visual appearance. You can modify this file

to change logos, background colors, text, and other features. See Appendix C, “About Style”.

Changing the User Interface Style

Style interacts with the UIFC that is described in Appendix A, “User Interface Foundation

Classes”. Most of the widgets depend on Style to set background images and colors, font

size and weight, and other parts of the visual elements.

The Qube 3 Software Architecture ships with one style file: trueBlue.xml. You can modify

this file and save it as your own style file. You must give it a new name and create a new

directory for your own style. The following example gives you high-level instructions for

creating a directory for your new style sheet, copying and modifying the style file.

IMPORTANT! You must make a copy of trueBlue.xml.

1. Change directories to /usr/sausalito/ui/style.

2. Copy the style file, trueBlue.xml to vendor_style.xml.

3. Add any graphics or other files needed for your style file.

The following is an example of modifying the trueBlue.xml file. In this example, the

following UI properties were changed, as shown in Figure 3–3 on page 3–11.

• trueBlue.xml was copied to test.xml; the word test is shown adjacent to Style

in Figure 3–3 on page 3–11.

• The color value for the aLinkColor value was changed to #0033CC.

• The title alignment was changed from left to right by modifying the tabAlign value.

• The font size was changed by modifying <property name="fontSize"

value="12pt"/> to <property name="fontSize" value="18pt"/>.

Chapter 3: User Interface 3—11

Similarly, changes were made to the background and divider colors of the table cells, and to

the button font and colors, and to the alignment of the image.

Below is an example of a modified style file.

Figure 3–3 Modified Style File

Making Other Style Changes

You can make other style changes in addition to the ones shown in Figure 3–3 by making

further modifications to your vendor_style file.

You can substitute your logo for Sun Cobalt’s logo by searching for the line:

<property name="logo" value="/libImage/topLogo.gif"/>

and putting the .gif file for your logo in place of topLogo.gif.

3—12 Chapter 3: User Interface

Chapter 4

Using i18n and l10n in The Qube 3 Software
Architecture

i18N: A World Tour
This chapter explains how to internationalize and localize the Qube 3 software architecture.

Terminology
This chapter uses two terms: internationalization, which is referred to as i18n, and

localization, which is referred to as l10n.

Chapter Contents

i18N: A World Tour

Terminology

How Internationalization Works

Using Domains, Tags, and Locales

Using Interpolation

The i18n Interface

The i18n PHP Interface

Internationalization Example

4—2 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

Internationalization refers to the operation by which a set of programs are made aware of and

are able to support multiple languages. This is a generalization process by which the programs

are freed from calling only strings of a locale or other locale-specific habits. Program

developers can use various techniques to internationalize their programs. GNU gettext

offers one of these standards. For more information about gettext, see

http://www.gnu.org/manual/gettext/html_mono/gettext.html.

Localization means the operation by which, in a set of programs already internationalized, the

developer gives the program all needed information so that it can adapt itself to handle its

input and output in a fashion that is correct for some native language and cultural habits. This

is a particularisation process, by which generic methods already implemented in an

internationalized program are used in specific ways. The programming environment provides

several functions at the programmers disposal that allow this runtime configuration. The

formal description of the specific set of cultural habits for some country, together with all

associated translations targeted to the same native language, is called the locale for this

language or country. Users achieve localization of programs by setting proper values to

special environment variables, prior to executing those programs, identifying which locale

should be used.

How Internationalization Works
The the Qube 3 software architecture provides a simple-to-use interface to a database of

localized strings used for internationalizing applications. This i18N interface is similar to the

GNU gettext interface, and is, in fact, a higher-level wrapper that encapsulates GNU

gettext functionality.

Like GNU gettext, the Qube 3 software architecture i18n library allows developers to

create their own databases of localized strings, and provides an interface for accessing that

database from within applications. The the Qube 3 software architecture i18n wrapper library

adds the following new functionality:

• Strings fetched from the library are subject to an interpolation process, in which user-

supplied variables and even other internationalized strings can be automatically

substituted into the localized string.

• Access to a set of routines for properly escaping the fetched strings for use in Web

applications, that is, for use in HTML documents or JavaScript programs.

• Automatic negotiation of the best possible locale, from a preference-ordered list of

locales.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—3

Using Domains, Tags, and Locales
The the Qube 3 software architecture i18N library manages a database of localized strings.

Each application or module is granted its own namespace within the database. This

namespace is a called a domain. Within each domain, individual messages are identified as a

string known as the message tag.

When an application retrieves a message from the i18N database based on the message’s

domain and message tag, the i18n searches the database for a localized message that most

closely matches the preferred locale.

Domains
A domain is a grouping for a similar set of resources, for example, the sendmail package can

be a unique domain. In practical terms, localization strings are packaged by domain. Each

domain defines the default language for its use in its own prop file. This file contains only a

locale specification. The file is located in the same directory and its name is derived from the

domain rather than the locale, for example, cobalt.prop for the Sun Cobalt domain.

Developers retrieve message strings from the i18N database by specifying both the domain

and the message identifier for each string.

Tags
A tag identifies a text string within a domain of strings for use in interpolation and I18N. The

tag identifies the localized string. The localized string is identified by the tag specified in the

function call and the domain specified within the i18N object. The locale used is the one

negotiated during the creation of the i18N object. Developers retrieve message strings from

the i18N database by specifying both the domain and the message id for each string using the

"[[domain.msgid]]" tags.

4—4 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

Locale
Locales are specified by strings that start with an ISO-639 two-letter language code and an

optional variant, all separated by underscore characters, for example, en_US.

In summary, the grammar for a locale identifier is:

locale_id := lang-code [’_’ country-code [’_’ variant-code]]

where lang-code, country-code, and variant-code are all alphanumeric codes

defined in ISO-639.

The following are some example locale identifiers:

• en: Generic english.

• en_US: English, American dialect.

• ja_JP_EUC: Japanese, as spoken in Japan, the EUC variant.

When the i18n library is initialized by an application, a comma-delimited list of locales is

supplied to the i18n library. This list of locales indicates the various locales that the user can

understand, in order of preference. The i18n library uses an intelligent algorithm to attempt

to select the best available locale for each domain because not all domains support the same

set of locales, for example: en_US or en, ja.

How Strings Are Added to the System
Adding new strings to the system is a three-step process:

1. A new .po file is created. This .po file defines all the message strings for one domain and

one locale.

2. The .po file is compiled into an .mo file using the msgfmt tool.

3. The .mo file is placed in the appropriate directory beneath

/usr/share/locale/locale/LC_MESSAGES.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—5

Using Interpolation
When a string is fetched from the i18n library, it is subject to a process called interpolation.

Interpolation allows user-supplied variables to be intelligently substituted into the string in

various places. It also allows a string to contain references to other messages in the i18n

database, which are expanded to full messages when interpolation occurs.

For example, if the following string is stored in the i18n message string database:

"Hello, my name is [[VAR.name]]."

If the i18n_get function is called with the user-supplied variable name set to Bob, the

following string would be returned by the library:

"Hello, my name is Bob."

Interpolation Rules
Every time a localized string is retrieved from the I18N database, it undergoes interpolation

according to the rules defined below.

Rule 1. The string is subdivided into a list of tokens according to the following grammar:

string := token*

token := (text | tag)

tag := [[domain . tagname var*]]

var := , key = value.

text := escaped-string

domain := escaped-string

tagname := escaped-string

key := escaped-string

value := escaped-string

NOTE: The tag grammar interpolates the tag configuration in this format and

substitutes variables into the string.

4—6 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

Rule 2. Strings are unescaped according to the following rules:

\n -> newline

\b -> backspace

\a

\f -> formfeed

\n -> newline

\r -> return

\t -> tab

\v -> vertical newline

\(char) -> literal character

Rule 3. Tags are subject to the following expansion rules:

If the domain equals VAR, then variable expansion occurs. The variable specified in tagname

is looked up in the current hash of variables. Its value is interpolated according to these rules

and its value is substituted here.

If the domain is not equal to VAR, than the domain token is interpreted as the name of a i18n

domain. The tagname token is interpreted as a message identifier, and the appropriate sub-

string is fetched from the i18n database and interpolated.

Rule 4. The expanded unescaped tokens are reassembled into a single internationalized string.

The i18n Interface
Application developers use the following interface to fetch properly interpolated and escaped

strings from the i18n database. Generally, the programmer first calls a constructor to create a

new i18n object, performs a number of fetch operations, and then destroys the i18n object.

The i18n object performs its own memory management on strings that it returns. When the

i18n object is destroyed, all memory allocated for various strings is freed automatically.

The i18n library is a C library, but Perl and PHP bindings are provided in addition to the C

interface. These various interfaces to the i18n library are documented below.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—7

The i18n C Language Interface
The function prototypes for the C language interface are in the following include file:

/usr/sausalito/include/cce/i18n.h

The link library for i18n is in these directories:

/usr/sausalito/lib/libi18n.a (library for static linking)

/usr/sausalito/lib/libi18n.so (library for dynamic linking)

The function interface for the C language interface follows.

i18n_handle *i18n_new (char *domain, char *locales)

Description: Constructs a new i18n object and returns a pointer to it.

Parameters:

domain: Identifies the default domain to use for operations where domain is omitted.

locales: A comma-delimited list of locale identifiers, listed in order of preference. This

list of locales is used to choose the best locale for each domain when strings are retrieved

from the database.

Returns: NULL for failure. Otherwise, returns a handle to a newly constructed i18N object.

void i18n_destroy (i18n_handle *handle)

Description: Destroys an i18n object, cleaning up all memory allocated by the i18n object.

Parameters:

handle: The i18n object to be destroyed.

Returns: Nothing.

4—8 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

i18n_vars * i18n_vars_new (void)

Description: Constructs a new object used to store an associative array of variables for use by

the various i18n interpolate and get functions.

Parameters: None.

Returns: A pointer to a new i18n_vars object (a GHashTable).

void i18n_vars_add (i18n_vars *v, char *key, char *value)

Description: Adds a new key-value pair to the i18n_vars object. Copies of both the key

and value are stored within the i18n_vars object. If this object is passed to a

i18n_interpolate or similar function, it is used during interpolation to expand the VAR

tags.

Parameters:

v: A pointer to a valid i18n_vars object key — a NULL-terminated string indicating the

variable name.

key: A NULL-terminated string indicating the object key.

value: A NULL-terminated string indicating the value of the named variable.

Returns: Nothing.

void i18n_vars_destroy (i18n_vars *v)

Description: Destroys an i18n_vars object and frees all memory associated with it.

Parameters:

v: The pointer to the i18n_vars object to destroy.

Returns: Nothing.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—9

char *i18n_interpolate (i18n_handle *h, char *str, i18n_vars *vars)

char *i18n_interpolate_html (i18n_handle *h, char *str, i18n_vars *vars)

char *i18n_interpolate_js (i18n_handle *h, char *str, i18n_vars *vars)

Description: These three functions provide direct access to the interpolation functionality

within the i18n library.

The i18n_interpolate function does not escape its output at all.

The i18n_interpolate_html function performs an additional escaping expansion on the

string it returns, escaping it appropriately for use in HTML content.

The i18n_interpolate_js function performs additional escaping, similar to the

i18n_interpolate_html function, except that the string is escaped appropriately for use in

JavaScript content.

Parameters:

h: A pointer to a valid i18N_handle object.

str: A NULL-terminated string to subject to interpolation, as described above.

vars: A pointer to a valid i18n_vars object. This object is used to find values for all

variables needed during string interpolation.

Returns: A NULL-terminated string containing the results of interpolation on the string str.

Optionally, this string can also have been escaped for use in HTML or JavaScript content.

char *i18n_get(i18n_handle *i, char *tag, char *domain, i18n_vars *vars);

char *i18n_get_html(i18n_handle *i, char *tag, char *domain, i18n_vars *vars);

char *i18n_get_js(i18n_handle *i, char *tag, char *domain, i18n_vars *vars);

The _get functions are identical to the _interpolate functions, except that the message

identified by domain and tag is fetched and then interpolated.

4—10 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

char *i18n_strftime(i18n_handle *i, char *format, time_t time);

char *i18n_get_datetime(i18n_handle *i, time_t t);

char *i18n_get_date(i18n_handle *i, time_t t);

char *i18n_get_time(i18n_handle *i, time_t t);

Description: These four functions get the time in the correct format for the current locale.

Given a format that is identical to the one for strftime formats, the epochal time as found in

time_t to the current locale settings.

Parameters:

i: The current i18n object.

format: The format to print the string in: %x, %X, and %C are useful.

t: The epochal time to format.

Returns: A pointer to a string formatted to the specified time.

The i18n PHP Interface

$i18n = new i18n (domain, languages)

Description: Constructor.

Parameters:

domain: Sets the default domain to use for interpolation when domain is not explicitly

specified.

langs: A comma-delimited list of locale identifiers, listed in order of preference. For

example, jp, sh, or en.

Returns: A new i18n object.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—11

Object Methods

function i18N($domain = "", $langs = "")

Description: Constructor.

Parameters:

domain: A string that describes the domain.

langs: A comma-delimited list of locale identifiers, listed in order of preference. For

example, en_US, en_AU, zh, de_DE. Optional.

function get($tag, $domain = "", $vars = array())

Description: Gets a localized string.

Parameters:

tag: The tag of the string in string. Identical to the msgid string in the .po file.

domain: The domain of the string in string. Identical to the .po or .mo file name without

the extension. Optional. If not supplied, the one supplied to the i18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains

"name" => "Kevin" and the string in question is "My name is [[VAR.name]]", then

"My name is Kevin" is returned.

Returns: A localized string if it is found or the tag otherwise.

4—12 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

function getJs($tag, $domain = "", $vars = array())

Description: Gets a localized string and encodes it into JavaScript-friendly encoding.

Parameters:

tag: The tag of the string in string. Identical to the msgid string in the .po file.

domain: The domain of the string in string. Identical to the .po or .mo file name without

the extension. Optional. If not supplied, the one supplied to the i18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains

"name" => "Kevin" and the string in question is "My name is [[VAR.name]]", then

"My name is Kevin" is returned.

Returns: A JavaScript-friendly localized string if it is found or the tag otherwise.

function getHtml($tag, $domain = "", $vars = array())

Description: Gets a localized string and encodes it into HTML friendly encoding.

Parameters:

tag: The tag of the string in string. Identical to the msgid string in the .po file.

domain: The domain of the string in string. Identical to the .po or .mo file name without

the extension. Optional. If not supplied, the one supplied to the i18N constructor is used.

vars: A hash of variable key strings to value strings. Optional. If the hash contains

"name" => "Kevin" and the string in question is "My name is [[VAR.name]]", then

"My name is Kevin" is returned.

Returns: An HTML-friendly localized string if it is found or the tag otherwise.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—13

function interpolate($magicstr, $vars = array())

Description: Gets a localized string out of a fully-qualified tag.

Parameters:

magicstr: The fully-qualified tag of the format:

"[[" . <domain> . "." . <tag> (. "," . <key> . "=" . <value>)* .

"]]"

vars: A hash of variable key strings to value strings. Optional.

Returns: A localized string or magicstr if interpolation failed.

function interpolateJs($magicstr, $vars = array())

Description: Gets a localized string out of a fully-qualified tag and encodes it into JavaScript-

friendly encoding.

Parameters:

magicstr: The fully-qualified tag of the format:

"[[" . <domain> . "." . <tag> (. "," . <key> . "=" . <value>)* .

"]]"

vars: A hash of variable key strings to value strings. Optional.

Returns: A JavaScript-friendly localized string or magicstr if interpolation failed.

function interpolateHtml($magicstr, $vars = array())

Description: Gets a localized string out of a fully-qualified tag and encodes it into HTML-

friendly encoding.

Parameters:

magicstr: The fully-qualified tag of the format:

"[[" . <domain> . "." . <tag> (. "," . <key> . "=" . <value>)* .

"]]"

vars: A hash of variable key strings to value strings. Optional.

Returns: An HTML-friendly localized string or magicstr if interpolation failed.

4—14 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

function getProperty($property, $domain = "", $lang = "")

Description: Gets a property value from the property file

/usr/share/locale/<locale>/<domain>.prop. Properties are defined as

<name>: <value>\n in the file. Each property is on its own line. Comments start with #.

Parameters:

property: The name of the property in string.

domain: The domain of the property in string. Optional. If not supplied, the one supplied

to i18N constructor is used.

lang: A comma-delimited list of locale identifiers, listed in order of preference. For

example, en_US, en_AU, zh, de_DE. Optional. If not supplied, the one supplied to

i18N constructor is used.

function getFile($file)

Description: Gets the path of the file of the most suitable locale. For example, if /logo.gif

is supplied, locale ja is preferred, and /logo.gif, /logo.gif.en and

/logo.gif.ja are available, /logo.gif.ja is returned.

Parameters:

file: The full path of the file in question.

Returns: The full path of the file of the most suitable locale.

function getAvailableLocales($domain = "")

Description: Gets a list of available locales for a domain or everything on the system.

Parameters:

domain: i18n domain in string. Optional.

Returns: An array of locale strings.

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—15

function getLocales($domain = "")

Description: Gets a list of negotiated locales.

Parameters:

domain: i18n domain in string. Optional.

Returns: An array of locale strings, the first one being the most important, and so forth.

function strftime ($format = "", $time = 0)

Description: Wrapper to strftime().

Parameters:

format: The format parameter to strftime().

time: The epochal time.

Returns: A strftime() formatted string.

Internationalization Example
This is the code used to create this menu.

msgid "helloMenuItem"

msgstr "Bonjour"

msgid "helloMenuItem_help"

msgstr "Ceci dit Bonjour a la Monde"

msgid "helloMenu"

msgstr "Bonjour Monde App"

msgid "helloMenu_help"

msgstr "Ceci est l’application Bonjour Monde"

4—16 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

msgid "helloString"

msgstr "Bonjour Monde!"

Bon jour Monde!

This is the Makefile.

Makefile for sample hello_world Sausalito application

VENDOR = sample

APP = hello

SRCS = en fr

I18NDIR = /usr/share/locale/

all:

nothing to do for all

install:

for a in $(SRCS); do \

DEST=$(I18NDIR)/$$a/LC_MESSAGES; \

mkdir -p $$DEST; \

msgfmt -e$$a/$(APP).po -e -o $$a/$(VENDOR)-$(APP).mo; \

install -o root -g root -m 644 $$a/*.mo $$DEST; \

done

Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture 4—17

Figure 4–1 Internationalized Hello World example

4—18 Chapter 4: Using i18n and l10n in The Qube 3 Software Architecture

Chapter 5

Introducing the Cobalt Configuration Engine

Chapter Contents

CCE — The Cobalt Configuration Engine

Basic Concepts

How Data Flows Through CCE

The CCE Daemon (CCEd)

Command-Line Parameters

CSCP — The Cobalt System Configuration Protocol

CODB — The Cobalt Object Database

Schemas

How to Read XML Syntax Descriptions

Schema Syntax

Sample Schema Definition File

Handler Registration

Events

Handlers

Stages

File Naming

Sample Handler Registration File

CCE Libraries

C

Perl

PHP

5—2 Chapter 5: Introducing the Cobalt Configuration Engine

The Cobalt Configuration Engine (CCE)
If the user interface is the face of the Qube 3 software architecture, the Cobalt Configuration
Engine (CCE) is the brains. CCE is the agent by which the user interface affects changes on a
system. It provides a unified interface to the task of configuring a system, and provides an
abstraction layer between the user interface and the underlying system software.

CCE allows the development of a user interface that is truly flexible—it does not need to have
intimate details about the underlying system. CCE is also designed to be extremely flexible,
and allow developers to add new configuration options easily. Developers can extend CCE in
the following ways:

• Add configuration definitions to define new configurable applications (classes).

• Add configuration information to extend the number of configurable options for an
existing application (namespaces).

• Add to the list of things that CCE does when configurable options change (handlers).

Basic Concepts

CCE is broken into several logical units for easier understanding. The major pieces of the
CCE system are:

• The CCE daemon (CCEd), which handles incoming connections, sessions, and
signals.

• The Cobalt Object Database (CODB), which maintains the object store that reflects the
current configuration of the system.

• The Cobalt System Configuration Protocol (CSCP), which is the protocol, or language,
that CCE uses to communicate with clients.

• The CCE client library (libcce), which provides routines for clients to better access
CCE via CSCP.

• The event handlers, which are the programs that make CCE changes take effect on the
system itself.

Chapter 5: Introducing the Cobalt Configuration Engine 5—3

CCEd maintains the configuration state of the system in a set of objects representing the
configurable applications, such as email and file sharing. These objects are stored internally
by CODB. System configuration files are generated or modified by event handlers, which are
triggered by a client making changes through CSCP. A client can be either a user interface or
a program written to interface with CCE.

Figure 5–1 CCE Block Diagram

How Data Flows Through CCE

From start to finish, getting data to do the right things and go to the right places can seem
complicated. The general flow of data through CCE is as follows:

• Packages register via configuration files for notification of when properties of objects
change, or when objects are created or destroyed, which are known as events.

• CCEd listens for incoming clients.

• A client connects to CCEd, which communicates using the CSCP protocol.

• The client gets or sets properties, or creates or destroys objects to configure the system.

• CCEd determines which handlers need to run to actuate events from the client, and
runs them.

• The handlers communicate with CCEd, if needed, via CSCP.

• The handlers each do their work and exit, indicating their state of success. If all
handlers succeed, the changes are saved to the CODB. Otherwise, changes are ignored
and discarded.

• CCEd returns the status of the transaction to the client via CSCP.

5—4 Chapter 5: Introducing the Cobalt Configuration Engine

Figure 5–2 illustrates the flow of CCE data.

Figure 5–2 CCE Process Flow

The CCE Daemon (CCEd)
The CCE daemon (CCEd) is the server process that implements the core of CCE. CCEd
accepts incoming client connections on a UNIX domain socket and initiates the CSCP
protocol; see “The Cobalt System Configuration Protocol (CSCP)” on page 5–5. Each
incoming connection is handled by a child process of the master CCEd process, leaving the
master process to handle new connections and signals. While active, the child process is
responsible for running handlers, maintaining and updating the object database, and
communicating with the client. The master process also catches signals delivered to it, such as
an interrupt signal, and distributes the signal to all the children, accordingly.

To preserve data integrity, all CSCP write operations for all clients are serialized. This does
not affect the performance of the system, because there are not typically multiple
simultaneous administrative sessions. For several reasons, including security, file system
access, and handler access, CCEd must run as root. Users must authenticate to CCEd to
perform most tasks in order to protect the system: see “The AUTH Command” on page E–6.
This authentication is passed through the Linux system of Pluggable Authentication Modules
(PAM).

Chapter 5: Introducing the Cobalt Configuration Engine 5—5

CCEd Command-Line Parameters

Usually, CCEd does not need command-line parameters. However, for debugging handlers or
CCE itself, it is sometimes useful to change certain aspects of CCEd’s behavior. The
following command-line parameters are available:

The Cobalt System Configuration Protocol (CSCP)
The Cobalt System Configuration Protocol (CSCP) is a simple protocol for communication
between clients and the CCE, and between the CCE and event handlers. It is a text-based,
newline delimited protocol, similar in form to FTP or HTTP. It is simple enough to be
understood and debugged without the need for special tools.

To use CCE, you must use CSCP. The simplest way to use CSCP is with the command-line
tool /usr/sausalito/bin/cceclient. This tool provides full access to CSCP directly,
and is similar to using telnet to connect to TCP services. Wrapper libraries are provided for
several popular languages to make CSCP easier to use from within programs.

For detailed information about the protocol specification, see Appendix E, “Cobalt System
Configuration Protocol”.

Table 5–1 CCEd Command-Line Parameters

Parameters Description

-c directory Set the handler configuration directory, /usr/sausalito/conf is the

default.

-d number Set the debug mask; 0 = no debugging (default), 0xffffffff = full debugging

and profiling.

-nd Do not run as a background daemon.

-nf Do not fork child processes, handle only one client.

-nh Do not run any handlers.

-ro Read-only; do not save database changes; implies -nh.

-st seconds Set the client authkey timeout, 1 hour (3600 seconds) by default.

-V Verbose.

-v Print version information and exit.

-vv Print even more version information and exit.

5—6 Chapter 5: Introducing the Cobalt Configuration Engine

The Cobalt Object Database (CODB)
The Cobalt Object Database (CODB), is similar in many respects to both traditional databases
and object systems. It also differs in some significant ways. Every object stored within CODB
has a unique identifier, its object ID (OID), which CSCP uses to identify instances. Like
traditional relational databases, CODB has a query language that allows the developer to
access stored data. Unlike a traditional database, CCE uses CSCP, rather than SQL.

The traditional form of object manipulation is through object methods. These methods
encapsulate and protect object data, stored in properties. CODB, by design, takes a different
approach. The Qube 3 software architecture system deals exclusively with properties. Unlike
traditional object systems, there are no directly-executing methods in the Qube 3 software
architecture. Instead, the Qube 3 software architecture provides events and event handlers,
which act as method code.

Schemas
The structure of objects within CODB is defined by schemas that are provided by third-party
vendors. Schemas, in the form of schema definition files, provide the class, property, and
typedef definitions necessary to impose order on the data within CODB. The syntax of a
schema definition file is simple XML and is very flexible.

How to Read XML Syntax Descriptions

Before proceeding, it is prudent to briefly cover the pieces that make a file XML. XML is a
plain-text file format, similar to HTML, or their common ancestor SGML. XML files are
parsed and the data in them is stored in a manner that is useful to the controlling application.

Whitespace

Throughout XML files, most whitespace characters (spaces, tabs, and newlines) are ignored.
The only exceptions to this rule are within quoted strings and within the content field of an
element. In these cases, called significant whitespace, whitespace is preserved.

Chapter 5: Introducing the Cobalt Configuration Engine 5—7

Symbols

To better represent the syntax used in this explanation, some symbols are necessary. Table 5–2
explains symbols herein.

Elements and Content

All XML files consist of one or more elements. Each element has a case-insensitive name and
a set of zero or more attributes. Elements can, but are not required to have content. Each
element is begun by an opening tag with the following form:

"<" SP* name SP* attribute* SP* ">"

The content field follows the opening tag. Content fields are free form and all characters are
retained, including whitespace. The content of one element can be, and frequently is, one or
more child elements. This containership is arbitrarily deep and is defined by the specific XML
format being used. The content field is terminated by a closing tag of the following form:

"</" SP* name SP* ">"

Because the content field is optional, it is frequently empty. A second form of opening tag is
allowed, which indicates the absence of a content field:

"<" SP* name SP* attribute* SP* "/>"

Attributes

As noted above, an element can have zero or more attributes. Attributes are always key-value
pairs, and the value is always a quoted string. Attribute keys are always alphanumeric, and,
like element names, are not case-sensitive. Attributes have the following form:

SP+ key SP* "=" SP* QU value QU

Table 5–2 Symbols Used in Schemas

Symbol Definition

SP Represents one whitespace character (space, tab, or newline).

SQ Represents one single-quote (').

DQ Represents one double-quote (").

asterisk (*) Represents zero or more occurrences of the previous expression.

plus (+) Represents one or more occurrences of the previous expression.

5—8 Chapter 5: Introducing the Cobalt Configuration Engine

Comments

In addition to elements, XML files can include comments. Comments can be outside of any
element or in the content of any element. Comments begin with the string <!-- and end with
the string -->. Any text within a comment is ignored.

Escape Sequences

Because some characters, such as < and > are used by the XML language itself, it is necessary
to use an alternate sequence of characters, called an escape sequence, to represent these
reserved characters. The following escape sequences are recognized by XML:

Sample XML
<!-- This is a sample XML file, illustrating syntax -->

<XMLElement NAME="Sample">

 <SubElement name="Sub Sample 1">

 This is <content> for a "SubElement"

 </SubElement>

 <SubElement Name = "Sub Sample 2" Color="green"></SubElement>

 <SubElement

 Name="Sub Sample 3" Note = "&"/>

</XMLElement>

Table 5–3 XML Escape Sequences

Literal Character Escape Sequence

< (less-than) <

> (greater-than) >

& (ampersand) &

’ (apostrophe) '

" (quote) "

 (space)

Chapter 5: Introducing the Cobalt Configuration Engine 5—9

Schema Syntax

Schema definition files can include any of the following elements:

• SCHEMA

• CLASS

• PROPERTY

• TYPEDEF

Syntax: SCHEMA

A SCHEMA is provided to identify a complete schema definition to the system. This element
provides such information as schema name, vendor, version, and any other information a
vendor might find useful to store with their schema definition. All child elements of a schema
are grouped together by the schema definition.

If no SCHEMA element is defined, or other top-level elements are defined, the non-schema-
wrapped elements of the description file are assumed to be part of a schema with NAME set to
the current filename (minus the .schema extension), and VENDOR and VERSION set to the
empty string (""). Sun Cobalt recommends that every schema description file contain explicit
SCHEMA elements, rather than rely on the default behavior.

Element name: "SCHEMA"

Required attributes: "NAME", "VENDOR", "VERSION"

Optional attributes: any

Required content: none

Optional content: "CLASS" or "TYPEDEF" elements

Valid Parents: none

Table 5–4 SCHEMA Attributes

Attribute Description

NAME The vendor-assigned name of the schema. This can be any string.

VENDOR The unique name of the schema’s vendor. This can be any string.

VERSION The vendor-assigned version of the schema. This can be any string, but by

convention is an integer or floating point number for example: "1" or

"3.1415".

5—10 Chapter 5: Introducing the Cobalt Configuration Engine

Syntax: CLASS

A CLASS is the formal definition of an object’s structure. An object has all the properties of its
CLASS, and only the properties of its CLASS.

Element name: "CLASS"

Required attributes: "NAME", "VERSION"

Optional attributes: "NAMESPACE"

Required content: none

Optional content: "PROPERTY" elements

Valid Parents: "SCHEMA"

Syntax: PROPERTY

A PROPERTY is a sub-element of a CLASS. A single PROPERTY defines a single datum.
CLASSES get their utility from their PROPERTY elements.

Element name: "PROPERTY"

Required attributes: "NAME", "TYPE"

Optional attributes: "DEFAULT", "OPTIONAL", "ARRAY", "READACL",

 "WRITEACL"

Required content: none

Optional content: none

Valid Parents: "CLASS"

Table 5–5 CLASS Attributes

Attribute Description

NAME The unique name of the class being defined or the name of the class being

extended. This must be a C-style symbol, that is, it must start with a letter or

underscore (_), followed by any number of letters, digits, or underscores. NAME

should, per convention, start with an upper-case letter, for example: "Foo".

VERSION The version number of this class structure. This can be any string, but by

convention is an integer or floating point number for example: "1" or "3.1415".

NAMESPACE The optional name of the namespace being defined for the specified CLASS. This

follows the same rules as NAME, with the exception that NAMESPACE can be a

blank string (""), or be unspecified.

Chapter 5: Introducing the Cobalt Configuration Engine 5—11

Table 5–6 PROPERTY Attributes

Attribute Description

NAME The name of the property. This must be a C-style symbol. See “Syntax:

CLASS” on page 5–10 syntax for the NAME attribute. All properties

beginning with an underscore (_) are reserved for future use.

TYPE The data type of the property. This must be a valid TYPEDEF name. Type

bindings are resolved after all schemas are loaded, so you can use a

typedef before it is defined. A PROPERTY with a TYPE that does not

exist will fail all data validation.

DEFAULT The default value of the property, used when the property is unassigned. This

can be any value that is valid for the specified TYPE. If DEFAULT is

unspecified, the default value is an empty string (""), which might be valid

for the PROPERTY.

OPTIONAL Defines whether the property can be the empty string ("") in addition to a

valid datum. This can be any string or unspecified. If unspecified or assigned

the value "" or "0" (zero), the optional flag is set to false; otherwise, the

optional flag is set to true.

ARRAY Defines whether the property is an array of the specified TYPE. This can be

any string or unspecified. If unspecified or assigned the value "" or "0"

(zero), the array flag is set to false; otherwise, the array flag is set to true.

When set to true, data for this property is assumed to be an unbounded array

of data of the type specified.

READACL Defines the read access rule list for the property. This is a comma or space

delimited list of security rules. If left blank or unspecified, the default value

is ruleUser.

WRITEACL Defines the write access rule list for the property. This is a comma or space

delimited list of security rules. If left blank or unspecified, the default value

is ruleAdmin.

5—12 Chapter 5: Introducing the Cobalt Configuration Engine

Syntax: TYPEDEF

A TYPEDEF is a mechanism to build on the basic data typing provided by CCE. A TYPEDEF is
a symbolic name given to a definition of a type and is used by a PROPERTY to validate its data.

Element name: "TYPEDEF"

Required attributes: "NAME", "TYPE", "DATA"

Optional attributes: "ERRMSG"

Required content: none

Valid content: none

Valid Parents: "SCHEMA"

Sample Schema Definition File
<SCHEMA

 NAME="Sample Schema"

 VENDOR="Sun Microsystems"

 VERSION="3.1415">

 <!-- Some classes, properties, namespaces, and types -->

 <CLASS name="SampleClass" version="12345">

 <PROPERTY name="name" type="sample_type" default="new"/>

 </CLASS>

Table 5–7 TYPEDEF Attributes

Attribute Definition

NAME The symbolic name for the type. This must be a C-style symbol. See

“Syntax: CLASS” on page 5–10 syntax for the NAME attribute.

TYPE The validation class for the TYPEDEF. This must be either re or extern.

DATA The TYPE appropriate data validator. For re TYPEs, it should be a valid

regular expression. For extern TYPEs, it should be the path to an external

program. The program should read the data from standard input, and return 0

if the data is valid or non-zero if it is invalid.

ERRMSG The error message returned by CCE when invalid data is written to an

instance of this TYPEDEF. This can be any string or unspecified.

Chapter 5: Introducing the Cobalt Configuration Engine 5—13

 <CLASS name="SampleClass" namespace="Demo" version="6.02e23">

 <PROPERTY name="name" type="sample_type" default="123"/>

 </CLASS>

 <TYPEDEF name="sample_type" type="re" data="[A-Za-z0-9]*" />

 <CLASS name="SampleClass2" version="2.7183">

 <PROPERTY

 name="name"

 type="foo_type"

 default="new"

 optional="1"

 array=""

 readacl="ruleAdmin" writeacl="ruleAdmin"

 />

 </CLASS>

 <TYPEDEF

 name="foo_type"

 type="re" data="[A-Za-z0-9]*"

 errmsg="Yowie! You can't do that with a foo_type!"

 />

</SCHEMA>

Handler Registration
The format of a CCE handler configuration file (conf) is very simple with two or three
whitespace-delimited fields per line, and one or more lines per file. Each line has the
following format:

5—14 Chapter 5: Introducing the Cobalt Configuration Engine

event <whitespace> handler <whitespace> stage

Any line that begins with a hash (#) or is blank is ignored.

Events

The event field defines the circumstances upon which the handler is run. The event field
follows the form:

class.property

This registers the specified handler to run whenever the specified class property is modified.
To register a handler on an object’s creation or destruction, use the special properties
_CREATE or _DESTROY. To register a handler on the modification of any property of a class,
use the special property * (asterisk).

Table 5–8 Valid Events

Event Condition

_CREATE When an object of the specified class is created.

_DESTROY When an object of the specified class is destroyed.

propertyname When the specified property of the specified class is modified.

* When any property of the specified class is modified.

Chapter 5: Introducing the Cobalt Configuration Engine 5—15

Handlers

The handler field defines the type of handler and the type-specific handler details. It has the
form:

type:details

The details of the handler depend on the type specified. The following types are available:

• exec, which executes the file named in the details field.

• perl, which sends the Perl script named in the details field through a persistent Perl
process, for improved Perl performance.

• test, which sends the contents of the details field to the standard output of CCEd.

For exec and perl type handlers, which have a path name in the details field, some path
expansion is performed. If the details field is a relative path (does not start with a /), the
default handler path /usr/sausalito/handlers/ is prepended to the details field.

Stages

All handlers are run in one of several stages and can thereby ensure some relative ordering.
The available stages are VALIDATE, CONFIGURE, EXECUTE, TEST, and CLEANUP. The stage
field is optional, and if left off, is assumed to be EXECUTE. Since handlers within a stage are
not guaranteed to run in any specific order, a single application can register multiple handlers
in each stage. Each stage’s name suggests what it can be used for. The VALIDATE stage, for
example, should be used by handlers that do not make any changes, but instead verify that the
requested event can be performed.

The final stage, CLEANUP, is meant for handlers that can not be undone. Handlers that register
for this stage must not exit with a failure status, or the system can be left in an inconsistent and
unrecoverable state.

File Naming

When searching for handler registration files, CCEd will do a recursive search of the handler
configuration directory. By default, this directory is /usr/sausalito/conf, but can be
specified with the -c option to CCEd, see “CCEd Command-Line Parameters” on page 5–5.
All files that end with .conf are parsed as handler registration files. The only exception to
this is that any file or directory that begins with a dot (.) is ignored.

5—16 Chapter 5: Introducing the Cobalt Configuration Engine

Sample Handler Registration File
Register handlers for Class from AVendor

Class._CREATE exec:/opt/AVendor/Class/Class_create configure

Class._DESTROY exec:/usr/sausalito/handlers/Class_destroy test

Class.* exec:AVendor/Class/Class_mod

Class.property perl:/usr/sausalito/bin/Class_prop.pl validate

CCE Libraries
In order to make CSCP easier for programmers to use, code libraries are provided in several
popular languages: C, Perl, and PHP. These libraries insulate the users from the details of the
CSCP protocol, and perform all the necessary conversions and transformations of data. The
libraries are used both in the construction of the new user clients to the CCE server and to
create handlers that extend the functionality of the CCE system.

All the libraries are similar in build and syntax, though there are minor variations among them
to accommodate for language-specific feature sets. Each library builds functional wrappers
around CSCP commands, as well as providing higher-level functions for common tasks.

These libraries are under constant development and will grow and evolve. As the libraries
grow, some aspects of the library interfaces will inevitably become deprecated. All deprecated
features will be retained for some time, for compatibility, but will eventually be removed from
the libraries, so it is essential that new development not rely on deprecated features.

C

The C language library for CCE is, of course, available for C programmers. The C library can
also be used as the basis for bindings in other languages, such as PHP, to access CSCP. This
library uses some opaque type and several accessor functions for those types. If you are
familiar with object-oriented programming in languages such as Java or C++, you can think of
these as methods for a class.

Chapter 5: Introducing the Cobalt Configuration Engine 5—17

Dependencies and Headers

The header files for libcce are found in /usr/sausalito/include, which should be
specified as part of a client applications include search path. The only header file libcce
applications need to include is <cce/cce.h>. This header includes anything else it needs. In
addition to this header, libcce has one dependency, a library called glib. When compiling
an application that links libcce, you also need to link glib. To link glib and libcce
successfully with your program, Sun Cobalt suggests adding the following options to your
build process:

• When compiling, specify the following as part of your build string:

-I/usr/sausalito/include ‘glib-config --cflags‘

• When linking, specify the following as part of your link string:

-L/usr/sausalito/lib ‘glib-config --libs‘ -lcce

Note that in both of the suggested strings, the quotations are back-quotes, not apostrophes.

Datatypes

Data structures are fundamental to using libcce. Several datatypes are defined by the CCE
library.

Struct: cce_error_t

This is a transparent structure, used to hold information about an error condition. The data
members of this structure are:

• cscp_oid_t oid: The object ID for which an error occurred.

• char *key: The property for which an error occurred (may be NULL).

• char *message: The error condition.

Struct: cce_handle_t

This opaque structure holds all the information about a connection to CCE. Almost every
libcce function needs a pointer to a cce_handle_t structure to be passed in.

5—18 Chapter 5: Introducing the Cobalt Configuration Engine

Enum: cce_handler_ret

This datatype is an enumeration of values for handlers to indicate success or failure. Values
for this enumeration are directly related to CSCP values for the BYE command. The following
are valid values:

• CCE_SUCCESS

• CCE_FAIL

• CCE_DEFER

Struct: cce_props_t

This opaque structure holds all the properties of a CODB object. Because it is opaque, several
accessor functions have been provided. See “Enum: cce_props_state_t”.

Enum: cce_props_state_t

This is an enumeration of state information for cce_props_t structures. Every
cce_props_t structure can represents a CODB object in one of various states:

• CCE_NONE

• CCE_MODIFIED

• CCE_CREATED

• CCE_DESTROYED

This information can be very useful to event handlers.

Typedef: cscp_oid_t

This type represents a CSCP object ID (OID). It is used to uniquely identify CODB objects in
all libcce functions. This is an integral type; do not make assumptions about whether it is
signed or unsigned.

Chapter 5: Introducing the Cobalt Configuration Engine 5—19

Functions

Functions within libcce can be broken down into three major categories: CSCP commands,
accessor functions for datatypes, and utility functions. First let’s examine CSCP command
functions. For more information on CSCP, see Appendix E, “Cobalt System Configuration
Protocol”. All of these functions, unless otherwise noted, are available to both handlers and
client applications.

char *cce_auth_cmnd(cce_handle_t *handle, char *user, char *pass);

Description: This function is used to authenticate to CCE. The provided username and
password are evaluated and an authentication key is returned. This function is available to
handlers that want to change their authentication state. Handlers, by default, begin their
sessions authenticated with full privileges.

Parameters:

handle: A pointer to the currently-connected CCE handle.

user: A pointer to the authenticating username string.

pass: A pointer to the authenticating password string.

Returns: A pointer to the authentication key string on success; NULL on failure.

int cce_authkey_cmnd(cce_handle_t *handle, char *user, char *key);

Description: This function is used to reauthenticate to CCE. When calling cce_auth_cmnd, a
pointer to an authentication key is returned. This function accepts that authkey in place of a
password. Like cce_auth_cmnd, this function is not needed by most handlers.

Parameters:

handle: A pointer to the currently-connected CCE handle.

user: A pointer to the authenticating username string.

key: A pointer to the authentication key.

Returns: A positive integer on success; NULL on failure.

5—20 Chapter 5: Introducing the Cobalt Configuration Engine

int cce_bye_cmnd(cce_handle_t *handle);

Description: This function is used by a client application to terminate the CCE session. It
terminates the CSCP connection and frees any internal structures of the passed
cce_handle_t. This function is strictly for non-handler use. Note the presence of
cce_bye_handler_cmd for use by handler applications.

Parameters:

handle: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure.

int cce_connect_cmnd(cce_handle_t *handle, char *path);

Description: This function initiates a CSCP connection to CCE. Once connected, the passed
cce_handle_t is initialized. The path parameter is optional, and if passed NULL, defaults to
/usr/sausalito/cced.socket. This function is strictly for non-handler use. Note the
presence of cce_connect_handler_cmnd for use by handler applications.

Parameters:

handle: A pointer to the currently-connected CCE handle.

path: The file path to the CCE UNIX Domain Socket (NULL = default).

Returns: A positive integer on success; NULL on failure.

cscp_oid_t cce_create_cmnd(cce_handle_t *handle, char *class, cce_props_t
*props);

Description: This function is used to create a new CODB object of the specified class. The
initialized values for the new object is taken from the passed cce_props_t.

Parameters:

handle: A pointer to the currently-connected CCE handle.

class: A pointer to the class name string.

props: A pointer to a cce_props_t holding initial values for the new object, or NULL for
no initialized values.

Returns: A cscp_oid_t representing the new object ID on success; NULL on failure.

Chapter 5: Introducing the Cobalt Configuration Engine 5—21

int cce_destroy_cmnd(cce_handle_t *handle, cscp_oid_t oid);

Description: This function attempts to destroy the CODB object specified by the passed oid.

Parameters:

handle: A pointer to the currently-connected CCE handle.

oid: The object ID of the desired object.

Returns: A positive integer on success; NULL on failure.

int cce_endkey_cmnd(cce_handle_t *handle);

Description: This function requests that CCE immediately end the period of validity for the
current session’s authentication key.

Parameters:

handle: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure.

GSList *cce_find_cmnd(cce_handle_t *handle, char *class, cce_props_t *props);

Description: This function performs a search of CODB for an object or list of objects that
match the specified criteria properties. The returned list is not guaranteed to be in any
predictable order.

Parameters:

handle: A pointer to the currently-connected CCE handle.

class: A pointer to the class name string.

props: A pointer to the properties structure holding the search criteria.

Returns: A pointer to a GSList of cscp_oid_t items; NULL if no objects match the
specified criteria.

5—22 Chapter 5: Introducing the Cobalt Configuration Engine

GSList *cce_find_sorted_cmnd(cce_handle_t *handle, char *class, cce_props_t
*props, char *sortkey, int sorttype);

Description: This function, like cce_find_cmnd, performs a search of the CODB. Unlike
cce_find_cmnd, however, this function returns its data in a sorted order.

Parameters:

handle: A pointer to the currently-connected CCE handle.

class: A pointer to the class name string.

props: A pointer to the properties structure holding the search criteria.

sortkey: A pointer to the property or namespace.property string upon which to sort
the data.

sorttype: An integer representing which sort method to apply: 0 = alphanumeric sort,
1 = numeric sort.

Returns: A pointer to a GSList of cscp_oid_t items; NULL if no objects match the
specified criteria.

cce_props_t *cce_get_cmnd(cce_handle_t *handle, cscp_oid_t oid, char
*namespace);

Description: This function attempts to retrieve the contents of the specified CODB object.

Parameters:

handle: A pointer to the currently-connected CCE handle.

oid: The object ID of the desired object.

namespace: The namespace to retrieve; NULL for no namespace.

Returns: A pointer to a cce_props_t structure holding the representation on the requested
object on success; NULL on failure.

Chapter 5: Introducing the Cobalt Configuration Engine 5—23

GSList *cce_names_class_cmnd(cce_handle_t *handle, char *class);

Description: This function retrieves the list of namespaces available for a specified CODB
class.

Parameters:

handle: A pointer to the currently-connected CCE handle.

class: A pointer to the class name string.

Returns: A pointer to a GSList of char * items; NULL if the class has no namespaces.

GSList *cce_names_oid_cmnd(cce_handle_t *handle, cscp_oid_t oid);

Description: Like cce_names_class_cmnd, this function gets the list of available
namespaces for a class. However, this function accepts a particular object ID, rather than a
class name.

Parameters:

handle: A pointer to the currently-connected CCE handle.

Returns: A pointer to a GSList of char * items; NULL if the object has no namespaces.

int cce_set_cmnd(cce_handle_t *handle, cscp_oid_t oid, char *namespace,
cce_props_t *props);

Description: This function attempts to set the specified properties in the specified CODB
object.

Parameters:

handle: A pointer to the currently-connected CCE handle.

oid: The object ID of the desired CODB object.

namespace: A pointer to the namespace string; NULL for no namespace.

props: A pointer to the properties structure holding the new values for the object.

Returns: A positive integer on success; NULL on failure.

5—24 Chapter 5: Introducing the Cobalt Configuration Engine

cscp_oid_t cce_whoami_cmnd(cce_handle_t *handle);

Description: This function returns the object ID of the currently-authenticated session.

Parameters:

handle: A pointer to the currently-connected CCE handle.

oid: The object ID of the desired CODB object.

namespace: A pointer to the namespace string; NULL for no namespace.

props: A pointer to the properties structure holding the new values for the object.

Returns: The object ID of the user authenticated in the current session.

int cce_bad_data_cmnd(cce_handle_t *handler, cscp_oid_t oid, char *namespace,
char *key, char *reason);

Description: This function allows a handler to report a problem with a specific piece of data
to CCE.

Parameters:

handler: A pointer to the currently-connected CCE handle.

oid: The object ID in question.

namespace: A pointer to the namespace string in question.

key: A pointer to the property name string in question.

reason: A string explanation of the problem.

Returns: A positive integer on success; NULL on failure.

Chapter 5: Introducing the Cobalt Configuration Engine 5—25

int cce_bye_handler_cmnd(cce_handle_t *handle, cce_handler_ret status, char
*message);

Description: This function provides a handler-specific method of terminating a CCE
connection. Handlers can exit with multiple success values. These values are important to
CCE to know whether a handler has failed.

Parameters:

handle: A pointer to the currently-connected CCE handle.

status: A symbolic exits status.

message: An optional message for a failure exit status.

Returns: A positive integer on success; NULL on failure.

cscp_oid_t cce_connect_handler_cmnd(cce_handle_t *handle);

Description: This function, for use by handlers, is analogous to
cce_connect_handler_cmnd. The reason for the distinction is in how handlers connect to
CCE. This function connects the CSCP file descriptor used by libcce to stdin and stdout
of the calling program.

Parameters:

handle: A pointer to the currently-connected CCE handle.

Returns: A positive integer on success; NULL on failure.

GSList *cce_last_errors_cmnd(cce_handle_t *handle);

Description: This function retrieves a list of errors and warnings for the most recent CCE
command. While not truly a CSCP command, this function allows developers to access the
error state of a CSCP connection.

Parameters:

handle: A pointer to the currently-connected CCE handle.

Returns: A pointer to a GSList of CCE error structures on success; NULL on failure or if no
errors or warnings are found.

5—26 Chapter 5: Introducing the Cobalt Configuration Engine

NOTE: In addition to the CSCP command functions, libcce provides several
accessor functions for the various datatypes used throughout.

cce_handle_t *cce_handle_new(void);

Description: This function is used to create a new, disconnected cce_handle_t structure. To
destroy a handle created by this function use cce_handle_destroy.

Parameters: None.

Returns: A pointer to a new CCE handle on success; NULL on failure.

void cce_handle_destroy(cce_handle_t *handle);

Description: This function is the complement to cce_handle_new. It frees any resources
allocated by the CCE handle. If the handle is connected, cce_bye_cmnd or
cce_bye_handler_cmnd should be called first.

Parameters:

handle: A pointer to the CCE handle to be destroyed.

Returns: Nothing.

int cce_props_count(cce_props_t *props);

Description: This function returns the number of properties stored in a CCE properties
structure.

Parameters:

props: A pointer to the CCE properties structure.

Returns: An integer value representing the number of properties currently stored.

Chapter 5: Introducing the Cobalt Configuration Engine 5—27

void cce_props_destroy(cce_props_t *props);

Description: This function is the complement to cce_props_new. It is used to release
resources used by a properties structure.

Parameters:

props: A pointer to the CCE properties structure.

Returns: Nothing.

char *cce_props_get(cce_props_t *props, char *key);

Description: This function retrieves a pointer to a string, stored internally to the
cce_props_t, representing the value of the property requested.

Parameters:

props: A pointer to the CCE properties structure.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found.

char *cce_props_get_new(cce_props_t *props, char *key);

Description: Because a CODB object, during a transaction, can have both changed (new) and
old properties, libcce provides a way to access both. This function gets values only from the
list of properties marked as changed (new).

Parameters:

props: A pointer to the CCE properties structure.

key: The name of the desired property.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found.

5—28 Chapter 5: Introducing the Cobalt Configuration Engine

char * cce_props_get_old(cce_props_t *props, char *key);

Description: Like cce_props_get_new, this function differentiates old and new data. This
function only gets values from the unchanged (old) values list.

Parameters:

props: A pointer to the CCE properties structure.

key: The name of the desired property.

Returns: A pointer to the value string on success; NULL on failure or if the requested
property is not found.

cce_props_t *cce_props_new(void);

Description: This function is used to allocate a new CCE properties structure.

Parameters: None.

Returns: A pointer to a new CCE properties structure on success; NULL on failure.

char *cce_props_nextkey(cce_props_t *props);

Description: This function provides the ability to iterate over the items stored in a CCE
properties structure. It retrieves the next property name in the internal queue.

Parameters:

props: A pointer to the CCE properties structure.

Returns: A pointer to the next property name string on success; NULL on failure.

void cce_props_reinit(cce_props_t *props);

Description: The CCE properties structure has some iteration primitives. This function is
used to reinitialize the iteration primitives.

Parameters:

props: A pointer to the CCE properties structure.

Returns: Nothing.

Chapter 5: Introducing the Cobalt Configuration Engine 5—29

void cce_props_set(cce_props_t *props, char *key, char *value);

Description: This function sets the specified property to the specified value. If the property
was previously set, the old value is overwritten by the new value.

Parameters:

props: A pointer to the CCE properties structure.

key: The property name to set.

value: A pointer to a string value to store.

Returns: Nothing.

void cce_props_set_old(cce_props_t *props, char *key, char *value);

Description: This function, like cce_props_set, sets a property to a new value. Like
cce_props_get_old, this function accesses only the property set that is marked as
unchanged.

Parameters:

props: A pointer to the CCE properties structure.

key: The property name to set.

value: A pointer to a string value to store.

Returns: Nothing.

cce_props_state_t cce_props_state(cce_props_t *props);

Description: This function retrieves the current state of the CCE properties structure. For
details on the valid return values, see “Enum: cce_props_state_t” on page 5–18.

Parameters:

props: A pointer to the CCE properties structure.

Returns: A cce_props_state_t that identifies the current state of the CCE properties
structure.

5—30 Chapter 5: Introducing the Cobalt Configuration Engine

NOTE: The last set of functions provided by libcce are the utility functions.
These are all helper functions to make various common activities simpler.

GSList *cce_array_deserial(char *str);

Description: This function takes a pointer to a CCE internal array representation and turns it
into a linked list.

Parameters:

str: A pointer to a CCE internal array string.

Returns: A pointer to a GSList of strings on success; NULL on failure.

void cce_list_destroy(GSList *list);

Description: This function is used to free a GSList of data. All elements and their data is
freed.

NOTE: Do not call this function with memory that is not dynamically allocated.

Parameters:

list: A pointer to the GSList to be freed.

Returns: Nothing.

cscp_oid_t cscp_oid_from_string(char *string);

Description: This function is used to read a string representation of a cscp_oid_t and
convert it to a real cscp_oid_t representation.

Parameters:

string: The string representation of the object ID.

Returns: The cscp_oid_t representation on success; NULL on failure.

Chapter 5: Introducing the Cobalt Configuration Engine 5—31

char *cscp_oid_to_string(cscp_oid_t oid);

Description: This function is used to create a string representation of a cscp_oid_t from a
real cscp_oid_t representation.

Parameters:

oid: The object ID of the desired object.

Returns: The string representation on success; NULL on failure.

Perl

The Perl form of libcce implements an object-oriented interface. The same interface is used
for communicating with CCEd both in the context of a client, such as a user interface, and in
the context of an event handler.

Module

The Perl library is located in /usr/sausalito/perl/CCE.pm. This directory should be
included on the perl command line, for example:

#!/usr/bin/perl -I/usr/sausalito/perl

To include the CCE module in your perl program, add this line to the top of your program:

 use CCE;

Creating a New Object

To begin using libcce in Perl, you must first create a CCE handle. This is analogous to the C
library functionality. To create a new CCE object, use the following statement:

my $cce = new CCE;

5—32 Chapter 5: Introducing the Cobalt Configuration Engine

Methods

All the functionality of the Perl libcce is provided as object methods of the CCE class.

$ok = $cce->auth($username, $password);

Description: This method is used to authenticate to CCE.

Parameters:

$username: The username for authentication.

$password: The password for authentication.

Returns: A boolean success code.

$ok = $cce->authkey($username, $sessionid);

Description: This method is used to resume a session or reauthenticate to CCE.

Parameters:

$username: The username for authentication.

$sessionid: The sessionid for authentication.

Returns: A boolean success code.

$ok = $cce->bye($status);

Description: This method is used to end a CCE session. The optional status parameter is used
by handlers to indicate one of the exit status conditions. See “Enum: cce_handler_ret” on
page 5–18.

Parameters:

$status: The exit status (handlers only).

Returns: A boolean success code.

Chapter 5: Introducing the Cobalt Configuration Engine 5—33

($ok, @classlist) = $cce->classes();

Description: This method retrieves a list of classes known by CCE.

Parameters: None.

Returns: A boolean success code or a list of classes.

$ok = $cce->connectuds($filename);

Description: This method is used exclusively by client applications (not handlers) to connect
to CCE. If specified, the filename parameter identifies the UNIX domain socket to open,
otherwise the socket /usr/sausalito/cced.socket is assumed.

Parameters:

$filename: The (optional) name of a UNIX domain socket.

Returns: A boolean success code.

($ok, $badkeys, @info) = $cce->create($class, \%object);

Description: This method is used to create a new CODB object. The provided object hash is
used as the initial values for the new object. The object ID of the new object can be retrieved
by a call to the oid method.

Parameters:

$class: The class name to create.

\%object: A reference to the hash of values with which to initialize the object.

Returns: A boolean success code, a hash reference of bad values, where the key is property
name, and the value is the reason, or a list of informational and warning messages issued by
CCE or handlers.

5—34 Chapter 5: Introducing the Cobalt Configuration Engine

($ok, @info) = $cce->destroy($oid);

Description: This method is used to destroy a CODB object.

Parameters:

$oid: The object ID to destroy.

Returns: A boolean success code or a list of informational and warning messages issued by
CCE or handlers.

$ok = $cce->endkey();

Description: This method is used to immediately end the validity of the current authkey.

Parameters: None.

Returns: A boolean success code.

@oidlist = $cce->find($class, \%criteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria.

Parameters:

$class: The class for which to search.

\%criteria: A reference to a hash of property criteria.

Returns: A list of object IDs that match the criteria.

Chapter 5: Introducing the Cobalt Configuration Engine 5—35

@oidlist = $cce->findNSorted($class, $key, \%criteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria. The resulting list is sorted numerically by the specified key property.

Parameters:

$class: The class for which to search.

$key. The property name upon which to sort.

\%criteria: A reference to a hash of property criteria.

Returns: A list of object IDs that match the criteria.

@oidlist = $cce->findSorted($class, $key, \%criteria);

Description: This method searches all instances of the specified class for instances that match
the specified criteria. The resulting list is sorted alphabetically by the specified key property.

Parameters:

$class: The class for which to search.

$key. The property name upon which to sort.

\%criteria: A reference to a hash of property criteria.

Returns: A list of object IDs that match the criteria.

5—36 Chapter 5: Introducing the Cobalt Configuration Engine

($ok, $object, $old, $new) = $cce->get($oid, $namespace);

Description: This method is used to fetch all of the attributes of a namespace or property
from CODB. If the namespace is unspecified, the main namespace is retrieved.

Parameters:

$oid: The desired object ID.

$namespace: The desired namespace name.

Returns: A boolean success code, a reference to a hash of the requested properties, a
reference to a hash of the previous values of any changed properties, if applicable, or a
reference to a hash of the changed values of the property set, if applicable.

($ok, @namelist, @info) = $cce->names($oid);

Description: This method is used to fetch the names of all of the namespaces for a particular
object ID.

Parameters:

$oid: The desired object ID.

Returns: A boolean success code, a list of namespaces, or a list of informational and warning
messages issued by CCE or handlers.

($ok, $badkeys, @info) = $cce->set($oid, $namespace, \%properties);

Description: This method sets the properties in a CODB object or namespace to the
properties specified. If the namespace is not specified, the main namespace is used.

Parameters:

$oid: The desired object ID.

$namespace. The desired namespace name.

\%properties: A reference to a hash of properties and values.

Returns: A boolean success code, a list of namespaces, or a list of informational and warning
messages issued by CCE or handlers.

Chapter 5: Introducing the Cobalt Configuration Engine 5—37

($ok, $auth_oid) = $cce->whoami();

Description: This method gets the object ID of the currently-authenticated user.

Parameters: None.

Returns: A boolean success code or the authenticated object ID.

NOTE: Like the C library, there are a few functions that are applicable only to
handlers.

$ok = $cce->baddata($oid, $key, $msg);

Description: This method is used exclusively by handlers to alert CCE and the calling client
to a data error.

Parameters:

$oid: The object ID in question.

$key: The property in question.

$msg: The reason or explanation of the error.

Returns: A boolean success code.

$ok = $cce->connectfd($readfd, $writefd);

Description: This method is used exclusively by handlers to connect their input and output
file descriptors to CCE. If the readfd or writefd parameters are omitted,
*STDIN and *STDOUT are assumed, respectively.

Parameters:

$readfd: The standard input file descriptor.

$writefd: The standard output file descriptor.

Returns: A boolean success code.

5—38 Chapter 5: Introducing the Cobalt Configuration Engine

$ok = $cce->info($msg);

Description: This method is used exclusively by handlers to issue an informational message
to CCE and the calling client.

Parameters:

$msg: The message to pass.

Returns: A boolean success code.

$ok = $cce->warn($msg);

Description: This method is used exclusively by handlers to issue a warning message to CCE
and the calling client.

Parameters:

$msg: The message to pass.

Returns: A boolean success code.

NOTE: Like the C version of libcce, the Perl library also provides several
support and data-access methods.

$oid = $cce->oid();

Description: This method is used to access the most recently created or found object ID.

Parameters: None.

Returns: The most recent object ID.

Chapter 5: Introducing the Cobalt Configuration Engine 5—39

$oid = $cce->event_oid();

Description: This method is used to access the object ID that triggered the current handler. It
is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering object ID.

$oid = $cce->event_namespace();

Description: This method is used to access the namespace that triggered the current handler.
It is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering namespace.

$oid = $cce->event_property();

Description: This method is used to access the property that triggered the current handler. It
is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering property.

$oid = $cce->event_object();

Description: This method is used to access the hash of properties representing the object that
triggered the current handler. It is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering object hash.

5—40 Chapter 5: Introducing the Cobalt Configuration Engine

$oid = $cce->event_old();

Description: This method is used to access the hash of changed properties of the object that
triggered the current handler. It is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering changed properties hash.

$oid = $cce->event_new();

Description: This method is used to access the hash of changed properties of the object that
triggered the current handler. It is meaningless in client applications.

Parameters: None.

Returns: A reference to the event-triggering changed properties hash.

Public Methods for CCEClient (PHP)

Unfortunately, product schedules did not allow Sun Cobalt to complete this section. To see
examples of this code, look at /usr/Sausalito/ui/web.

Chapter 6

Making Qube 3 Software Architecture-Aware

Applications

Making Qube 3 Software Architecture-Aware Applications

This chapter provides information on creating applications that run on the Sun Cobalt Qube 3

server appliance. To create an application, you must create a module that includes all the

components needed and structure it requires so that it can be easily installed by users, in a

package file format (.pkg). This chapter lists the fields that you need to include so that the

Sun Cobalt Qube 3 server appliance can display the appropriate information during the

installation process. It also describes the appropriate directories, files, and resources for your

application module.

Chapter Contents

Making Qube 3 Software Architecture-Aware Applications

Making your Application into a Package

Introducing Slush Barn, a “Real-World” Application

How to Install your Package File on the Sun Cobalt Qube 3 Server
Appliance

Package Structure

6—2 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

About the Application Module

The application module is a self-contained bundle of files, directories, and resources required

for a new capability. Depending on the type of module you are creating, you choose the

appropriate level of integration. Some modules trigger both the user interface and the back-

end system; others are stand-alone modules.

New modules can contain any or all of the following code:

1. User interface (UI) modules

• UI pages built using UIFC.

• Navigation nodes, such as adding buttons and menu items.

The Web mail service that is displayed on the Sun Cobalt menu is an example of a service

that is integrated only with the user interface and uses IMAP as its back-end system. The

files for the user interface go into the ui directory. For more information about module

directory layout, see Table 6–2 on page 6–5.

2. Internationalization modules

• Internationalization resources to translate the user interface into other languages.

3. Back-end modules

• CCE configuration files.

• CCE handlers.

Adding a user to the Sun Cobalt Qube 3 server appliance is an example of an instance that

impacts only the back-end modules, where the existing user interface is used and the CCE

configuration files and handlers are invoked.

4. Binary modules

• Service binary and configuration files. For example, email modules have

SendMail and Majordomo binaries and modify the configuration files for these

binaries.

• Databases that register users as they are created and notify event handlers about

creating users. This type of module uses the existing user interface.

These modules can be manually installed and completely unintegrated to the Sun Cobalt

user interface (UI).

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—3

Naming Your Application Module

Developers must use unique vendor-specific names for modules to avoid name conflicts.

NOTE: Sun Cobalt uses base in its module names, for example,

base-devel.mod. Developers must differentiate their modules by naming

the modules with a distinctive name, preferably a name that reflects their

company or product, for example, vendor_name_module.

Building a New Service Module

A service module is a self-contained bundle of files or directories and resources required for a

new capability, for example, an e-commerce product or a system backup product. New

modules can contain any or all of the following:

• Navigation nodes — service.xml

• User interface (UI) pages built using UIFC — service.php

• Internationalization resources — service.po

• CCE configuration files — service.schema, service.conf

• CCE handlers — serviceMod.pl, serviceMod.c

• Service binaries and configuration — serviced

NOTE: You can write handlers in any language. Sun Cobalt provides

bindings for C and Perl.

Sun Cobalt enabling tools include:

• Standard directory structure document; see Figure 6–7 on page 6–23.

• Build tools to create loadable module files (scripts and a Makefile).

6—4 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Making your Application into a Package

This section describes the skeleton module for the Qube 3 software architecture. By

customizing the skeleton module for your needs, you can integrate seamlessly into the Sun

Cobalt configuration environment.

To build a service module:

1. Create handlers to interact with the Cobalt Configuration Engine (CCE). A

configuration file goes in glue/conf; the actual handlers go in glue/handlers.

2. Create any user interface components, if necessary. These include Web and menu page

descriptors, which go in the ui/web and ui/menu directories, respectively.

3. Write any locale files; these go in the locale directory.

4. Look at templates/spec.tmpl and templates/packing_list.tmpl.

NOTE: The default template to build RPM files is in

/usr/sausalito/devel/templates. If you want to modify these

templates, create a template directory in your module. Copy these files to

your template directory and modify them as needed.

5. Look at the top-level Makefile. Adjust the variables to fit your situation.

The default build targets are make all, make clean, make install, and make rpm.

NOTE: A sample skeleton module is available in the Sun Cobalt Developer Web

page. Go to http://developer.cobalt.com/devnet/devtools.html

for the code sample and Readme file.

Here’s some more information about the default make rules and expected file names:

Table 6–1 The top-level Makefile variables

Makefile Variables Description

VENDOR The vendor field for your module.

VENDORNAME The actual vendor name; this name can be the same as VENDOR.

SERVICE The name for the service.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—5

The BUILD variables determine which directories to include when calling the clean,

install, and rpm targets.

The default make rules take the BUILD? variables and build up ui, glue, and locale RPMS,

if requested. If any of these RPMs are generated, a capstone RPM is created as well. A

capstone is a type of packing list for the RPMs.

VERSION Version number.

RELEASE Release number.

BUILDARCH Set to noarch if you do not want platform-specific RPMs generated.

XLOCALEPAT Set to a space-separated list of locale patterns to exclude.

BUILDUI Packages all files in ui/web and ui/menu.

BUILDLOCALE Set to yes to build these components, create RPMs, and create a capstone

RPM.

BUILDSRC Build the files in the src directory.

BUILDGLUE If BUILDGLUE is set to yes, packages all the handlers, object schemas,

configuration files for event triggers, and config files. If set to no,

BUILDGLUE does no packaging.

DEFLOCALE This locale is used for static HTML pages, for example, en or ja.

Table 6–2 Module Directory Layout

Directories Description

constructor Capstone constructors.

destructor Capstone destructors.

glue Handler and configuration modification code.

ui User interface and user interface menu code.

locale Locale information and locale-specific UI pages.

templates User-modifiable template files used in packing list and RPM generation.

src src directory (optional).

RPMS RPMS directory (optional).

SRPMS Source RPMS directory (optional).

Table 6–1 The top-level Makefile variables

Makefile Variables Description

6—6 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

The default make rules expect the following file layout:

1. glue/conf/*

glue/handlers/*

2. locale/localeX/$(SERVICE).po

3. ui/menu/*

ui/web/*

4. constructor/*

destructor/*

The default make rules place these files in the following locations:

glue/conf/* -> $(CCEDIR)/conf/$(VENDOR)/$(SERVICE)/*
glue/handlers/* -> $(CCEDIR)/handlers/$(VENDOR)/$(SERVICE)/*

locale/localeX/$(SERVICE).po ->
/usr/share/locale/localeX/LC_MESSAGES/$(VENDOR)-$(SERVICE).mo

ui/menu/* -> $(CCEDIR)/ui/menu/$(VENDOR)/$(SERVICE)/*
ui/web/* -> $(CCEDIR)/ui/web/$(VENDOR)/$(SERVICE)/*

constructors/* $(CCEDIR)/constructor/$(VENDOR)/$(SERVICE)/

destructors/ $(CCEDIR)/destructor/$(VENDOR)/$(SERVICE)/*

If your module does not contain compiled code, the above make rules should be all that you

need for building a service module. Otherwise, you need to know about a couple additional

make rules. First, make checks for Makefiles in the glue, src, and ui directories and uses

them, if they are present. You must prepend the PREFIX environment variable on the install

phase of the Makefile so that RPMs are properly generated.

In addition, the make rpm rule does not touch the src directory, so you must create any

RPMs you want from separate specification files. templates/packing_list.tmpl should

be updated to reflect any of these RPMs without version numbers. You should create a file

with the same name as the RPM in the rpms directory to get the appropriate version included

in the packing list.

Finally, you might need to edit templates/rpmdefs.tmpl to add additional build, install,

and file targets for any files that you have. The <begin [$%]VARIABLE> sections in the

rpmdefs.tmpl file correspond to the same [VARIABLE_SECTION] sections in templates/

spec.tmpl. If you want to add something to spec.tmpl that is not dependent upon a single

RPM, you can directly add it to spec.tmpl.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—7

NOTE: If you have a VENDORNAME specified, make searches first in {glue,
locale, ui, src}/$(VENDORNAME) for files before searching in the glue,
locale, ui, and src directories.

Introducing Slush Barn, a “Real-World” Application

Here is an example of how to create a new Qube 3 software architecture module. The goal of

this example is to manage a barn of animals using a UIFC-enabled front-end while updating

an XML file on the server. This example is included to help you better understand how the

pieces of the Qube 3 software architecture work together to form a simplified means of

creating Web-based server administration tools.

The files created in making this module are listed in below. Although many files are needed

for this module to work properly, each file is usually very short and serves its purpose. Details

on the syntax and contents of each file type are listed throughout this manual.

NOTE: These code modules are given the vendor-specific name slush so that

they are differentiated from the Qube 3 software architecture standard files. For

a list of standard files, see Appendix D, “Base Data Types”.

• slush-barn.mod/Makefile

• slush-barn.mod/glue/conf/barn.conf

• slush-barn.mod/glue/handlers/Animal.pl

• slush-barn.mod/glue/schemas/animal.schema

• slush-barn.mod/glue/handlers/Animal.pl

• slush-barn.mod/ui/menu/barn.xml

• slush-barn.mod/ui/web/animal.php

• slush-barn.mod/ui/web/animalHandler.php

• slush-barn.mod/ui/web/slaughter.php

• slush-barn.mod/locale/en/animal.po

6—8 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

The data types are registered with CCE using a typedef and a class tag within the XML file

animal.schema. The typedef called animalType defines a new type that might contain

only the strings Pig, Cow, Horse, and Chicken. The class itself is called BarnAnimal and

has two properties. The name property refers to the given name of that particular barn animal,

and the type property is defined as being of type animalType. Each time an addition is

made to our barn, a new instance of the class BarnAnimal is created and its properties are

filled with the data entered by the user.

Event handlers are also registered with CCE. These event handlers are found within the

barn.conf file. As defined, our handler (Animal.pl) is called upon any creation, change, or

destruction of a BarnAnimal instance. The handler in turn uses the data entered to create and

update an XML file called /etc/barn.conf, but any types of service configuration can

occur here, as the handler is run as root if triggered by the admin user.

The logic to the user interface is very simple. A listing of all the currently known animals is

listed in the barn.php file using a ScrollList type. This type allows for multiple columns

of data along with formatting rules making for a clear and distinct separation between the

logic and presentation of the user interface. The ModifyButton and the AddButton on this

page link to a page called animal.php, which is generic in that it allows for both the creation

and manipulation of animals within the barn. These actions are done in the page named

animalHandler.php, which receives the POST of the animal.php page. To remove an

animal from the barn, the slaughter.php page is called along with the OID of the object to

be deleted.

In order for our pages to be linked within our site, we need to create the XML tree node. This

file is called barn.xml and contains information regarding that node. An ID is assigned to

every node of the tree as a reference point when creating parent-child relationships.

In this example, you can manipulate objects in a barn.

NOTE: No animals were harmed in the making of this application.

The new page is shown in Figure 6–1.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—9

Figure 6–1 Manipulating Barn Objects

How to Install your Package File on the Qube 3

There are two ways that packages can be installed on the Sun Cobalt Qube 3 server appliance:

• Manually

• Update server

Both these ways provide information about the package, that is, package meta-information,

before the user installs the package. This meta-information includes fields with the package

name, vendor, description, license, and whether package dependencies exist; these fields are

described in Table 6–3 on page 6–13. This information is needed to properly display in the

Sun Cobalt Qube 3 server appliance UI details about the package before its installed. To

provide this information, this information is included in the package list and the package

information directories for each package.

6—10 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Update servers alert you if they have new software for your Sun Cobalt Qube 3 server

appliance. When the Sun Cobalt Qube 3 server appliance is alerted that there is a new version

of software, the update server and the Sun Cobalt Qube 3 server appliance have the following

dialog:

1. The Sun Cobalt Qube 3 server appliance queries the server for information about new

software. It provides details about the Sun Cobalt Qube 3 server appliance including

the packages installs, Sun Cobalt Qube 3 server appliance identification, and so forth.

2. The update server replies with list of available packages with associated information,

such as license and locale information. This informations corresponds to the

packing_list and the contents of the pkginfo directory.

3. If an InfoURL field is specified, a popup window with the URL is displayed when you

go to the install detail page. If an InfoURL field is not specified, a short description of

the package is displayed.

4. Installation can be selected.

The events around the manual installation are as follows:

1. The user on the Sun Cobalt Qube 3 server appliance enters the package location

through either browser upload, URL download, or putting the file in

/home/packages.

2. The Sun Cobalt Qube 3 server appliance prepares the package for installation and

displays the installation page. This informations corresponds to the packing_list

and the contents of the pkginfo directory.

3. The contents of the installation page display a short description of the package that is

to be installed.

4. Installation can be selected.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—11

Installation Process

The following stages occur in the installation process:

• If the package requires the server to reboot, the user is prompted to reboot the

machine.

• The install process looks first for a splash page. If the splash page specifies the

pre-installation option, it looks for an index.cgi or index.php page to call. It

passes in the following two variables: submitURL and cancelURL.

NOTE: The splash page optionally specifies a pre-installation page, which

allows the developer to create a custom page for the package including license

information. This page must be a CGI or PHP page that accepts GET requests.

• If the splash page does not exist and the license field does, BlueLinQ presents a

standard license page containing the value of the license field.

NOTE: The Sun Cobalt Qube 3 server appliance software notification

mechanism is called BlueLinQ.

• Once the user accepts the license (if there is a license), BlueLinQ checks package

dependencies, and halts if there is a dependency error. If not, BlueLinQ runs the pre-

installation scripts, install RPMS, and then runs the post-installation script. The scripts

are located in the scripts directory of the package.

NOTE: BlueLinQ installs an RPM only if it is newer than any existing RPMs.

If there is an existing RPM on the server, BlueLinQ increments the reference

count each time you add a package with a RPM referenced in it. When you

uninstall a package, the reference count is reduced. If the reference count for a

package is less than one, BlueLinQ deletes the RPM.

6—12 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Choices for the Installation Process

You can customize your installation. You can change the look and feel of install by opting to

include:

• An infoURL field.

• A splash page.

• A generic license.

The splash page must be a CGI or PHP file. The update process calls this CGI with the

following URL variables set: submitURL and cancelURL.

Package Structure

The package file format is a tar.gz file. When you install a package file, BlueLinQ checks

for the following items:

• Whether the file is a tar file or a compressed tar file.

• Whether the file is signed.

In packages for earlier Sun Cobalt products, package files had the following elements:

• packing_list

• RPMs

• SRPMs

• install_me script

Packages for earlier Sun Cobalt products had scripts that performed all installation tasks.

Package dependency checking was done by the package itself. New packages have scripts that

run at specified times.The scripts deal with the following issues:

• Pre-installation

• Post-installation

• Pre-uninstallation

• Post-uninstallation

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—13

BlueLinQ runs these scripts as part of the installation. Package dependencies are based on

vendor name, version number, and package name. You can evaluate version numbers to

determine if they are equal, less than, or greater than the target version. The Qube 3 software

architecture currently checks a three-part field, for example, 1.0 or 1.1.2.

The new packing list format includes the following elements as shown in Table 6–3.

NOTE: All the information in the package list format is case-sensitive.

Table 6–3 Package List Format

Component Description

[Package -- Version=1.0]

Vendor Vendor name can include alphabetical characters, numbers,

underscore (_), and the plus sign (+). Spaces and hyphens (-) are

not permitted.

VendorTag Internationalizable vendor string.

Name Package name can include alphabetical characters, numbers,

underscore (_), and the plus sign (+). Spaces and hyphens (-) are

not permitted.

NameTag: Internationalizable package name string.

Category Category information can include alphabetical characters,

numbers, underscore (_), and the plus sign (+). Spaces and

hyphens (-) are not permitted.

Location URL that specifies the package download location.

InfoURL Additional information URL. Optional. Use this if you want to

display a new site (as opposed to installing a package).

InfoURL options Options that should be sent to the URL, which can include serial

number, product identifier (product), and vendor name (name).

Version Version of the package.

Version Tag Internationalizable version number.

Size Size in bytes (only used by the update server).

6—14 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Product:

NOTE: Use this field to specify as

many products as you are

including. Include one line for

each package. You can use a

regular expression to specify

products, for example:

(4000|4010|4100) WG.

Sun Cobalt product requirements: for example, 4100WG or

4nnnWG.

NOTE: 4000WG is the product number for the basic Sun Cobalt

Qube 3 server appliance.

4010WG is the product number for the Sun Cobalt Qube 3 server

appliance with caching.

4100WG is the product number for the Sun Cobalt Qube 3 server

appliance with caching and mirroring.

PackageType Specify complete or update.

Options Possible values are uninstallable, reboot, refreshui,

refreshcce.

LongDesc Internationalizable long description.

ShortDesc Internationalizable short description.

Copyright: Internationalizable copyright string.

License Internationalizable license information. Optional.

Splash Pre-install, post-install, pre-uninstall, post-uninstall.

Depend

NOTE: Each dependency must be

on its own line. See “Package

Dependency Model” on

page 6–17 for more information.

Package dependencies. For example, vendor:package. The

package does not show up in the new or update pages if these

dependencies are not met. Here’s what is expected:

vendor:package vendor-package must exist.

vendor:package ! vendor-package must not exist.

vendor:package <=> version vendor-package is less

than, equal to, or greater than the specified version number.

vendor:package != version vendor-package not

equal to version.

VisibleDepend

NOTE: Each dependency must be

on its own line. See “Package

Dependency Model” on

page 6–17 for more information.

Just like Depend except that the package shows up in the new or

update lists even if dependencies are not met.

Table 6–3 Package List Format

Component Description

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—15

NOTE: Internationalized strings are in the following format: [[vendor]]. If

you are specifying strings within the pkginfo locale directory, then do not

specify a domain. The Qube 3 software architecture specifies the domain for

you. The pkginfo locale strings cannot include locale tags within locale tags.

You can include locale tags that refer to other domains.

Package files have the following structures. Figure 6–2 shows the package file structure.

Figure 6–2 Package File Structure

See “Module File Hierarchy” on page 6–23 for a more complete file hierarchy.

Obsoletes

NOTE: Each obsoletes must be on

its own line. See “Package

Dependency Model” on

page 6–17 for more information.

Obsoletes vendor-packages.

format:

vendor:package

vendor:package <=> version

RPM Used only by the actual package.

SRPM Used only by the actual package.

Table 6–3 Package List Format

Component Description

packing_list

pkginfo

scripts

RPMS

SRPMS

pre-uninstall

post-uninstall

pre-install

post-install

6—16 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

NOTE: The packing_list format for packages is very similar to the package

part of the package_list update server packing list. You can use them

interchangeably with the caveat that some fields are unused. For example, the

update server information uses the size field. The packing list uses RPM,

SRPM, and fileName.

The following features are only used by software update notification mechanism (BlueLinQ):

• Size (in bytes)

• InfoURL

• Location

• PackageType

The following fields are only used by actual package installation mechanism:

• RPM

• SRPM

• Options

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—17

Package Dependency Model

The dependency model allows you to restrict packages to particular Sun Cobalt products, for

example, the Sun Cobalt Qube 3 server appliance. You can also include dependencies on other

software packages. Finally, you can declare old packages obsolete.

The format for dependency requires that each dependency is on a separate line with a label

denoting the type of dependency. The Qube 3 software architecture offers three types of

dependency information:

• Product: Sun Cobalt Product Dependency, such that the package installs if other

software products that are needed are not already installed. These are checked by

product ID, for example 4000WG. You can use a specific product, particular version, or

you can use a Perl regular expression here.

• Package dependencies:

• Depend: Normal package dependency based on the version number being less

than (<), equal to (=), or greater than (>) the version number specified.

• VisibleDepend: Same as Depend but is only useful for the software update

mechanism. The packages that do not meet dependencies behave identically to the

Depend in all other manners to new or update packages despite the fact that the

package cannot be installed.

• Obsoletes: Obsoletes package’s name or name and optional version, less than (<),

equal to (=), or greater than (>) the version number specified, which removes

information about other packages of that name or version number specified.

Information for Installing Stand-Alone Packages

The following are used in the actual package installation process but not in update server-

supplied information. They are not used for the update server pkginfo.

• RPM

• SRPM

• Options (in a comma-separated list) include:

• reboot

• refreshui

• refreshcce

6—18 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

• uninstallable

These fields are used to provide information and are included in the actual package, as well as

provided by the update servers:

• Package identification

• name and nametag

• version and versionTag

• vendor and vendorTag

• Description

• shortDesc

• longDesc

• License information

• License

• Splash

• Category

These fields are found only in update server package:

• Size (in bytes)

• PackageType: complete or update

• Location

• InfoURL: A pop-up window appears when the user clicks the magnifying glass.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—19

Figure 6–3 New Software Installed

If you click on the magnifying glass, you see the information shown in Figure 6–4, which

corresponds to the information in Table 6–3 on page 6–13.

Figure 6–4 New Software Installation Details

6—20 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Software Update Server

NOTE: If the infoURL file exists, it displays a popup window and does not

install the actual package.

The BlueLinQ tab on the Sun Cobalt Qube 3 server appliance has an Updates menu. This

page lists available software with the following information.

• Update server-provided information (name, vendor, locale, description).

• Pop-up information. InfoURL displays the URL to be passed the Sun Cobalt Qube 3

server appliance serial number.

• The package checks for an InfoURL. If one exists, the page referenced by the

InfoURL appears. If not, the package presents the license information, and installs

after the user accepts the license agreement.

When users click on Install Details, the Sun Cobalt Qube 3 server appliance:

• Displays the splash page if there is one or displays a license agreement in

standardized license format.

• Begins installation.

When the user begins installation, these events occur on the Sun Cobalt Qube 3 server

appliance:

• It checks for a signature and attempts to authenticate it, if one is present. If the

signature cannot be authenticated, a message is displayed letting the user know that the

signature check failed.

• It runs the preinstallation script.

• It installs the Redhat Package Modules (RPMs).

NOTE: Sun Cobalt uses Redhat Package Manager (RPM) files because

applications are easy to manage if they are installed using RPM utilities. For

details on creating *.rpm files (also known as “redhat package module” files),

see Maximum RPM, by Marc Ewing and Erik Troan. Maximum RPM is the

definitive technical reference for the RPM packaging system. It provides

information on RPM’s history, usage, and internals from both the user and

packager perspectives. See http://www.redhat.com/ for the most up-to-date

information about RPM technology.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—21

• It runs the postinstallation scripts.

• It reboots or refreshes, if those options are set.

Figure 6–5 shows the Update Server page.

Figure 6–5 Update Software Installed

If you click on the magnifying glass, you see the information shown in Figure 6–6, shown in

Figure 6–4, which corresponds to the information in Table 6–3 on page 6–13.

Figure 6–6 Update Software Installation Details

6—22 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

Development Details

Modules expect the following auxiliary support from the Qube 3 software architecture

development tools:

• SAUSALITO/devel/module.mk for all the Makefile rules.

• SAUSALITO/bin/mod_rpmize for the RPM specification file generator.

Chapter 6: Making Qube 3 Software Architecture-Aware Applications 6—23

Figure 6–7 Module File Hierarchy

Makefile

Constructor

serviceConstructor.pl

Destructor

serviceDestructor.pl

glue

service.conf
am

conf
service.conf

handlers

addservice.pl

delservice.pl

modservice.pl

schemas
sevice.schema

locale

en

service.po

src

Makefile

ServiceHelper

Makefile
serviceHelper.c

serviceHelper.h

serviceHelper.sh
Continued on next page.

6—24 Chapter 6: Making Qube 3 Software Architecture-Aware Applications

templates

packing.list.tmpl

rpmdefs.tmpl

spec.tmpl

ui

menu

web

serviceRoot.xml

serviceAdmin.xml

serviceUser.xml

serviceSettings.php

serviceSettingsHandlers.php

Appendix A

User Interface Foundation Classes

This appendix is a complete reference for all User Interface Foundation Classes (UIFC). The

UIFC is a comprehensive set of class libraries for Sun Cobalt’s user interface components.

Their functions include generation of HTML code for rendering and JavaScript code for error

checking. “Utility Classes” on page B–1 describes classes that work in conjunction with the

UIFC classes.

To use UIFC, you should have some basic knowledge about object-oriented design and

programming as well as PHP, because UIFC is object-oriented and implemented in PHP.

The UIFC were designed to provide both user interface consistency and flexibility.

HtmlComponentFactory is the first class you should look at. It is a factory class that

constructs UIFC classes in the most commonly used way. See “HTMLComponent” on

page A–27.

Each UIFC class is listed in this appendix in alphabetical order.

HTML Generation
UIFC contains classes of visual components. The classes have methods to generate the look

and feel in HTML. For example, the IpAddress class generates HTML code that represents

an IP address data type. In this way, a change in look and feel of a visual component within

the whole user interface can be accomplished by modifying just one class.

Error Checking
Form fields in UIFC support the plug-in of JavaScript error checking code. This feature is

useful for checking and reporting errors interactively. Not all form fields require error

checking because their input might be limited to valid data. For more information of error

handling, see “Error” on page B–3.

A—2 Appendix A: User Interface Foundation Classes

Reusable Code
The class hierarchy of UIFC is designed to be reusable. It is easy to subclass a UIFC class and

make a more specific visual component. For example, a class B IP address can be made by

subclassing the IpAddress class. FormFieldBuilder also generates HTML code.

Common Pitfalls
There are several things to avoid when using UIFC:

• The UIFC encompass many functions. You must pay special attention in extending

UIFC classes to add new functionality. New functionality can introduce

inconsistencies if the functionality does not occur in the existing user interface.

• Because UIFC is written in PHP and PHP does not have good support for object-

oriented programing, UIFC users can directly refer to private variables and methods of

UIFC classes. For good programming practice, do not do this because these functions

could change in the future.

• Do not use UIFC to format free-flow text paragraphs. Pure HTML provides more

formatting capabilities than UIFC. You can put HTML inside UIFC pages.

• The toHeaderHtml() method of the Page object outputs HTTP headers. Do not print

anything before this method. As a common PHP catch, blank lines are printed. The

following code provides a warning because there is a blank line above the method:

 <?php

 ...

 ?>

 <?php

 print($page->toHeaderHtml());

 ?>

• Because PHP is interpreted and is basically typeless, it is very easy to pass in

parameters of wrong types to functions or methods. This can generate runtime errors

from UIFC classes that your code does not use directly.

Appendix A: User Interface Foundation Classes A—3

AddButton
This class creates an Add Button. The application causes an Add Button action when the

button is clicked.

Extends: The class AddButton extends Button.

Implements: The class AddButton implements HTMLComponent, Stylish, and

Collatable.

See Also: BackButton, CancelButon, DetailButton, ImageButton, ModifyButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

Public Methods

function AddButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

BackButton
This class creates a Back Button. The application causes a Back Button action when the

button is clicked.

Extends: The class BackButton extends Button.

Implements: The class BackButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, CancelButon, DetailButton, ImageButton, ModifyButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

A—4 Appendix A: User Interface Foundation Classes

Public Methods

function BackButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

Bar
This class creates a vertical bar on the page.

Extends: The class Bar extends FormField.

Implements: The class Bar implements HTMLComponent, Stylish, and Collatable.

See Also: FormField.

Public Methods

function getLabel()

Description: Gets the label.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

Appendix A: User Interface Foundation Classes A—5

function setLabel($label)

Description: Sets the label to replace the percentage shown by default.

Parameters:

$label: A label in string.

Returns: Nothing.

See Also: getLabel().

function setVertical()

Description: Sets bar to type vertical.

Parameters: None.

Returns: Nothing.

Button
This class creates a labeled Button. The application causes a specified action when the button

is clicked.

Extends: HtmlComponent.

Implements: The class Button implements HTMLComponent, Stylish, and Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

ModifyButton, MultiButton, RemoveButton, SaveButton, UninstallButton.

A—6 Appendix A: User Interface Foundation Classes

Public Methods

function Button($page, $action, $label, $labelDisabled = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

$label: A Label object for the normal state.

$labelDisabled: A Label object for the disabled state. Optional. If not supplied, it is

the same as $label.

function getAction()

Description: Gets the action to perform when the button is pressed.

Parameters: None.

Returns: An action.

See Also: setAction().

function setAction($action)

Description: Sets the action to perform when the button is pressed.

Parameters:

$action: The action to perform.

Returns: Nothing.

See Also: getAction().

Appendix A: User Interface Foundation Classes A—7

function isDisabled()

Description: Gets the state of the button.

Parameters: None.

Returns: True if the button is disabled; false otherwise.

See Also: setDisabled().

function setDisabled($isDisabled)

Description: Sets the state of the button.

Parameters:

$isDisabled: True if the button is disabled; false otherwise.

Returns: Nothing.

See Also: isDisabled().

function getLabel()

Description: Gets the label for the button.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function getLabelDisabled()

Description: Gets the disabled label for the button.

Parameters: None.

Returns: A label in string.

A—8 Appendix A: User Interface Foundation Classes

function setLabel($label, $labelDisabled = "")

Description: Sets the label for the button.

Parameters:

$label: A Label object for the normal state.

$labelDisabled: A Label object for the disabled state. Optional. If not supplied, it is

the same as $label.

Returns: Nothing.

See Also: getLabel().

function toHtml($style = "")

Description: Gets an HTML representation of the button to present.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the button.

CancelButton
This class creates a Cancel Button. The application causes a Cancel Button action when

the button is clicked.

Extends: The class CancelButton extends Button.

Implements: The class CancelButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, DetailButton, ImageButton, ModifyButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

Appendix A: User Interface Foundation Classes A—9

Public Methods

function CancelButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

CompositeFormField
This class creates a CompositeFormField.

Extends: The class CompositeFormField extends FormField.

Public Methods

function CompositeFormField()

Description: Constructor.

Parameters: None.

function getDelimiter()

Description: Gets the delimiter to separate form fields.

Parameters: None.

Returns: A delimiter in string.

See Also: setDelimiter().

A—10 Appendix A: User Interface Foundation Classes

function setDelimiter($delimiter)

Description: Sets the delimiter to separate form fields.

Parameters:

$delimiter: A delimiter in string.

Returns: Nothing.

See Also: getDelimiter().

function getFormFields()

Description: Gets form fields added to this object.

Parameters: None.

Returns: An array of FormField objects.

function addFormField($formField)

Description: Adds a form field to this object.

Parameters:

$formField: A FormField object.

Returns: Nothing.

Appendix A: User Interface Foundation Classes A—11

CountryName
This class creates a CountryName.

Extends: The class CountryName extends FormField.

Public Methods

function CountryName($page, $id, $value)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The group of country names defined in ISO 3166.

DetailButton
This class creates a Detail Button. The application causes a Detail Button action when

the button is clicked.

Extends: The class DetailButton extends Button.

Implements: The class DetailButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, ImageButton, ModifyButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

A—12 Appendix A: User Interface Foundation Classes

Public Methods

function DetailButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

DomainName
This class creates a DomainName.

Extends: The class DomainName extends FormField.

DomainNameList
This class creates a DomainNameList.

Extends: The class DomainNameList extends FormField.

EmailAddress
This class creates an EmailAddress.

Extends: The class EmailAddress extends FormField.

Appendix A: User Interface Foundation Classes A—13

EmailAddressList
This class creates an EmailAddressList.

Extends: The class EmailAddressList extends FormField.

Public Methods

function EmailAddressList ($page, $id, $value, $invalidMessage, $emptyMessage)

Description: Superclass constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The path.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function setImport($on, $javascriptFunction = "")

Description: Sets the import feature of the list so that email addresses can be imported from

the address book.

Parameters:

$on: True to enable import; false to disable.

$javascriptFunction: JavaScript code that is being run during import.

Returns: Nothing.

A—14 Appendix A: User Interface Foundation Classes

function setFormat($format = "BLOCK")

Description: Sets the format of the list.

Parameters:

$format: Format to have the EmailAddressList show up in either BLOCK mode in

which email addresses are one per line using a TextBlock field or in a SINGLELINE

mode where multiple email addresses can be entered comma-separated in a First

Lastname <abc@abc.net> format. Using SINGLELINE returns the email addresses

only in the $id variable as done in the BLOCK mode, but also returns the unformatted data

in the $id_full variable.

Returns: Nothing.

FileUpLoad
This class creates a FileUpload.

Extends: The class FileUpload extends FormField.

Public Methods

function FileUpload($page, $id, $value, $maxFileSize = "", $invalidMessage,
$emptyMessage = "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The path.

$maxFileSize: The maximum file size allowed to upload in bytes. Optional.

$invalidMessage: The message to be shown upon invalid input. Optional.

Appendix A: User Interface Foundation Classes A—15

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function setMaxFileSize($maxFileSize)

Description: Sets the maximum file size allowed to upload.

Parameters:

$maxFileSize: Bytes in integer.

Returns: Nothing.

Form
This class represents an HTML form.

Applicability
This class is used where an HTML form is needed.

Usage
Each Page contains a Form object that is accessible by the getForm() method of the Page

object. Form objects have getId() methods to get its ID, which is used as the name attribute

of the HTML form tag. Each form has a JavaScript onsubmit() handler associated with it.

Because JavaScript function form.submit() does not call the onsubmit() handler; you

must explicitly call onsubmit() if you submit the form through JavaScript. If no action is

supplied, environment variable REQUEST_URI is used as action. Otherwise, JavaScript

variable isActionAvailable for the form object is set to true.

A—16 Appendix A: User Interface Foundation Classes

Public Methods

function Form($page, $action = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The action attribute of the form tag. Optional. If not supplied, it is set to

environment variable REQUEST_URI.

function getAction()

Description: Gets the action attribute.

Parameters: None.

Returns: The action attribute of the form tag.

See Also: setAction().

function setAction($action)

Description: Sets the action attribute.

Parameters:

$action: The action attribute of the form tag.

Returns: Nothing.

See Also: getAction().

function getTarget()

Description: Gets the target.

Parameters: None.

Returns: The target attribute of the form tag.

Appendix A: User Interface Foundation Classes A—17

See Also: setTarget().

function setTarget($target)

Description: Sets the target.

Parameters:

$target: The target attribute of the form tag.

Returns: Nothing.

See Also: getTarget().

function getId()

Description: Gets the ID of the form. It is also the name attribute.

Parameters: None.

Returns: An identifier in string.

See Also: setId().

function setId($id)

Description: Sets the ID of the form. It is also the name attribute.

Parameters:

$id: An identifier in string.

Returns: Nothing.

See Also: getId().

function getSubmitAction()

Description: Gets the form action that is used to submit the form.

Parameters: None.

Returns: A string.

A—18 Appendix A: User Interface Foundation Classes

function toFooterHtml($style = "")

Description: Translates the footer of the form into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

FormField
This class represents an HTML form field.

Extends: The class FormField extends HtmlComponent.

NOTE: You can not put HTML into FormField values.

Public Methods

function FormField($page, $id, $value = "", $invalidMessage = "", $emptyMessage
= "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this form field. Used in the name attribute of input fields.

$value: The default value of this form field. Depending on what this form field is, the

value can be different.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

Appendix A: User Interface Foundation Classes A—19

function getAccess()

Description: Gets the access property.

Parameters: None.

Returns: A string.

See Also: setAccess().

function setAccess($access)

Description: Sets the access property.

Parameters:

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

Returns: True on success; false otherwise.

See Also: getAccess().

function getEmptyMessage()

Description: Sets the message to display when the form field is empty.

Parameters: None.

Returns: A string.

See Also: setEmptyMessage().

function setEmptyMessage($emptyMessage)

Description: Sets the message to display when the form field is empty.

Parameters:

$emptyMessage: A string.

Returns: Nothing.

See Also: getEmptyMessage().

A—20 Appendix A: User Interface Foundation Classes

function getId()

Description: Gets the unique ID of the form field.

Parameters: None.

Returns: An identifier in string.

See Also: setId().

function setId($id)

Description: Sets the unique ID of the form field. It is used to identify the form field when the

form containing the field is submitted. This ID is a variable name; only alphanumeric

characters and underscores are supported.

Parameters:

$id: An identifier in string.

Returns: Nothing.

See Also: getId().

function getInvalidMessage()

Description: Gets the message to display when the form field is invalid.

Parameters: None.

Returns: A string.

See Also: setInvalidMessage().

function setInvalidMessage($invalidMessage)

Description: Sets the message to display when the form field is invalid.

Parameters:

$invalidMessage: The message to be shown upon invalid input. Optional.

Returns: Nothing.

See Also: getInvalidMessage().

Appendix A: User Interface Foundation Classes A—21

function isOptional()

Description: Gets the optional flag.

Parameters: None.

Returns: True if this form field is optional; false otherwise.

See Also: setOptional().

function setOptional($optional)

Description: Sets the optional flag; it indicates if the form field can be empty.

Parameters:

$optional: True if the field is optional; false otherwise.

Returns: Nothing.

See Also: isOptional().

function getValue()

Description: Gets the value of different types depending on which concrete subclass of form

field this is.

Parameters: None.

Returns: The value.

See Also: setValue().

function setValue($value)

Description: Sets the value; depending on the concrete type of the form field (for example,

IpAddress); this value can be of different type.

Parameters:

$value: Any variable.

Returns: Nothing.

See Also: getValue().

A—22 Appendix A: User Interface Foundation Classes

FormFieldBuilder
This class helps to build form field components.

Applicability
Any form field can use this class to build components.

Public Methods

function makeCheckboxField($id, $value, $access, $checked, $onClick = "")

Description: Makes a checkbox field.

Parameters:

$id: The identifier of the field.

$value: The value of the HTML input field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$checked: True if it is checked; false otherwise.

$onClick: The onClick attribute of the field.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—23

function makeFileUploadField($id, $access, $size, $maxLength, $onChange)

Description: Makes a file upload field.

Parameters:

$id: The identifier of the field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$size: The length of the field.

$maxLength: The maximum number of characters that can be entered into the field.

$onChange: The onChange attribute of the field.

Returns: The HTML that represents the field.

function makeHiddenField($id, $value = "")

Description: Makes a hidden field.

Parameters:

$id: The identifier of the field.

$value: The value of the HTML input field.

Returns: The HTML that represents the field.

function makeJavaScript($formField, $changeHandler, $submitHandler)

Description: Makes JavaScript for form fields.

Parameters:

$formField: The FormField object to generate JavaScript for.

$changeHandler: The JavaScript function that is called when the form field change.

$submitHandler: The JavaScript function that is called when the form field submits.

Returns: The HTML that represents the field.

A—24 Appendix A: User Interface Foundation Classes

function makePasswordField($id, $value, $access, $size, $onChange)

Description: Makes a password field.

Parameters:

$id: The identifier of the field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$size: The length of the field.

$onChange: The onChange attribute of the field.

Returns: The HTML that represents the field.

function makeRadioField($id, $value, $access, $checked)

Description: Makes a radio field.

Parameters:

$id: The identifier of the field.

$value: The value of the HTML input field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$checked: True if it is checked; false otherwise.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—25

function makeSelectField($id, $access, $size, $width, $isMultiple, $formId,
$onChange = "", $labels = array(), $values = array(), $selectedIndexes =
array())

Description: Makes a select field.

Parameters:

$id: The identifier of the field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$size: The size attribute of the HTML SELECT tag.

$width: The minimum width. Select field width is static in Netscape and dynamic in IE.

$isMultiple: True if multiple items can be selected; false otherwise.

$formId: The ID of the form this field resides in.

$onChange: The onChange attribute of the field. Optional.

$labels: An array of labels in string. Optional. Must have same length with $values.

$values: An array of values in string. Optional. Must have same length with $labels.

$selectedIndexes: An array of indexes of labels for the selected field.

Returns: The HTML that represents the field.

function makeTextField($id, $value, $access, $size, $maxLength, $onChange)

Description: Makes a text area field.

Parameters:

$id: The identifier of the field.

$value: The value of the HTML input field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$size: The length of the field.

$maxLength: The maximum number of characters that can be entered into the field.

$onChange: The onChange attribute of the field.

A—26 Appendix A: User Interface Foundation Classes

Returns: The HTML that represents the field.

function makeTextAreaField($id, $value, $access, $rows, $columns, $onChange,
$wrap = "")

Description: Makes a text area field.

Parameters:

$id: The identifier of the field.

$value: The value of the HTML input field.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$rows: The number of rows.

$columns: The number of columns.

$onChange: The onChange attribute of the field.

Returns: The HTML that represents the field.

function makeTextListField($id, $values, $access, $formId, $rows, $columns)

Description: Makes a text list field.

Parameters:

$id: The identifier of the field.

$values: An array of values in string.

$access: "" for hidden, "r" for read-only, "w" for write-only, and "rw" for read and write.

$formId: The ID of the form this field resides in.

$rows: The number of rows.

$columns: The number of columns.

Returns: The HTML that represents the field.

Appendix A: User Interface Foundation Classes A—27

FullName
The class FullName extends FormField.

GroupName
The class GroupName extends FormField.

HTMLComponent
This class creates an HtmlComponent.

Extends: The class HtmlComponent extends Stylish.

Implements: The class HtmlComponent Collatable.

function HtmlComponent($page)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

function setPage($page)

Description: Sets the Page object in which this HTMLComponent resides.

Parameters:

$page: The Page object in which this object resides.

Returns: Nothing.

A—28 Appendix A: User Interface Foundation Classes

function toHtml($style = "")

Description: Translates into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

ImageButton
This class creates an Image Button. The application causes an Image Button action when

the button is clicked.

Extends: The class ImageButton extends Button.

Implements: The class ImageButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ModifyButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

Public Methods

function ImageButton($page, $action, $image, $lbl, $desc)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

$image: An URL of an image.

$lbl: A label in string.

$desc: A description string.

Appendix A: User Interface Foundation Classes A—29

ImageLabel
This class creates an ImageLabel.

Extends: The class ImageLabel extends Label.

Public Methods

function ImageLabel($page, $image, $label, $description = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$image: An URL of an image.

$label: A label in string.

$description: A description string.

function getImage()

Description: Gets the image used as the label.

Parameters: None.

Returns: An URL of an image.

See Also: setImage().

function setImage($image)

Description: Sets the image used as the label.

Parameters:

$image: An URL of an image.

Returns: Nothing.

A—30 Appendix A: User Interface Foundation Classes

See Also: getImage().

Integer
The class Integer extends FormField.

Public Methods

function Integer($page, $stylist, $id, $value, $invalidMessage, $emptyMessage
= "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$stylist: A stylist object that defines the style.

$id: The identifier of this object.

$value: The default value.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input, if the field is not optional.

Optional.

function getMax()

Description: Gets the maximum valid value.

Parameters: None.

Returns: An integer.

See Also: setMax().

Appendix A: User Interface Foundation Classes A—31

function setMax($max)

Description: Sets the maximum valid value.

Parameters:

$max: The maximum valid value.

Returns: Nothing.

See Also: getMax().

function getMin()

Description: Gets the minimum valid value.

Parameters: None.

Returns: An integer.

See Also: setMin().

function setMin($min)

Description: Sets the minimum valid value.

Parameters:

$min: The minimum valid value.

Returns: Nothing.

See Also: getMin().

function toHtml($style = "")

Description: Translates into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

A—32 Appendix A: User Interface Foundation Classes

IntRange
The class IntRange extends FormField.

Public Methods

function IntRange($page, $stylist, $id, $value, $invalidMessage, $emptyMessage
= "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$stylist: A stylist object that defines the style.

$id: The identifier of this object.

$value: The default value.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function isConfirm()

Description: Superclass constructor.

Parameters: None.

See Also: setConfirm().

Appendix A: User Interface Foundation Classes A—33

function setConfirm($isConfirm)

Description: Sets the configuration flag.

Parameters:

$isConfirm: True if a confirm field is shown; false otherwise.

Returns: Nothing.

See Also: isConfirm().

IpAddressList
This class creates an IpAddressList.

Extends: The class IpAddressList extends FormField.

Label
This class creates a Label.

Extends: The class Label extends HtmlComponent.

Implements: The class Label implements Collatable.

Public Methods

function Label($page, $label, $description = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$label: A label in string.

A—34 Appendix A: User Interface Foundation Classes

$description: A description string.

function getDescription()

Description: Gets the description of the label.

Parameters: None.

Returns: A description string.

See Also: setDescription().

function setDescription($description)

Description: Sets the description of the label.

Parameters:

$description: A description string.

Returns: Nothing.

See Also: getDescription().

function getLabel()

Description: Gets the label.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function setLabel($label)

Description: Sets the label.

Parameters:

$label: A label in string.

Returns: Nothing.

Appendix A: User Interface Foundation Classes A—35

See Also: getLabel().

Locale
The class Locale extends FormField.

Public Methods

function getPossibleLocales()

Description: Gets the list of possible locales.

Parameters: None.

Returns: An array of locale strings.

See Also: setPossibleLocales().

function setPossibleLocales($possibleLocales)

Description: Sets the list of possible locales.

Parameters:

$possibleLocales: An array of locale strings; browser is also a possible special

locale string case.

Returns: Nothing.

See Also: getPossibleLocales().

MacAddress
The class MacAddress extends FormField.

A—36 Appendix A: User Interface Foundation Classes

MailListName
The class MailListName extends FormField.

ModifyButton
This class creates a Modify Button. The application causes a Modify Button action when

the button is clicked.

Extends: The class ModifyButton extends Button.

Implements: The class ModifyButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

MultiButton, RemoveButton, SaveButton, UninstallButton.

Public Methods

function ModifyButton($page, $action)

Description: Constructor.

Parameters: None.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

MultiButton
This class represents a button with multiple actions. Users can perform one of those actions by

selecting it.

Appendix A: User Interface Foundation Classes A—37

Applicability
Anywhere a related set of actions are provided for the users to select and the selected one is

being performed.

Usage
Instantiate a MultiButton by specifying a text. This text is like the label of the button.

Extends: The class MultiButton extends FormField.

Implements: The class MultiButton implements HTMLComponent, Stylish, and

Collatable. It also implements action[], actionText[], and text.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

ModifyButton, RemoveButton, SaveButton, UninstallButton.

Public Methods

function MultiButton($page, $text = "", $id = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$text: A label text in string. Optional.

$id: The identifier of this object.

function getActionText($action)

Description: Superclass constructor.

Parameters:

$action: The string used within HREF attribute of the A tag.

A—38 Appendix A: User Interface Foundation Classes

function getActions()

Description: Gets all the text of the button.

Parameters: None.

Returns: An array of text strings.

See Also: addAction(), getActions().

function addAction($action, $text)

Description: Adds an action to the button.

Parameters:

$action: The string used within HREF attribute of the A tag.

$text: A label text in string.

Returns: Nothing.

function getSelectedIndex()

Description: Gets the index of the selected action.

Parameters: None.

Returns: An array of indexes of labels for the selected action.

See Also: setSelectedIndex().

function setSelectedIndex($selectedIndex)

Description: Sets the index of the selected action.

Parameters:

$selectedIndex: An array of indexes of labels for the selected action.

Returns: Nothing.

See Also: getSelectedIndex().

Appendix A: User Interface Foundation Classes A—39

function getText()

Description: Gets the default text of the button.

Parameters: None.

Returns: A label text in string.

See Also: setText().

function setText($text)

Description: Sets the default text of the button.

Parameters:

$text: A label text in string.

Returns: Nothing.

See Also: getText().

MultiChoice
This class represents a widget that allows users to choose one or more options. It can render

itself as different forms such as pull-down menus or checkboxes for different option types,

which can be a single option or many options.

Applicability
Use Multichoice where options need to be selected.

Usage
This class is used to instantiate an object and add options, for example, the Option class, to it.

Each option can contain form field objects. For example, a multiple choice for payment

method can have cash and credit card options; the credit card option can have a credit card

number field associated with it. Although this class selects the best form to render

A—40 Appendix A: User Interface Foundation Classes

automatically, users can use the setFullSize() to force this class to use a more readable

but consume more space form. The setMultiple() methods can be used to make multiple

options selectable at once. When multiple is set, this submitted value of this form field is an

array encoded in a string by array packer.

Extends: The class MultiChoice extends FormField.

Public Methods

function MultiChoice($page, $id)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

function getOptions()

Description: Gets all options added.

Parameters: None.

Returns: An array of Option objects.

See Also: addOption().

function addOption($option, $selected)

Description: Adds an option; options are not selected by default when they are added.

Parameters:

$option: An Option object.

$selected: True if selected; false otherwise.

Returns: Nothing.

Appendix A: User Interface Foundation Classes A—41

function setFullSize($fullSize)

Description: Sets the full size mode.

Parameters:

$fullSize: True to make the object rendered as more readable, but less compact; false

otherwise.

Returns: Nothing.

function setMultiple($multiple)

Description: Sets the multiple mode.

Parameters:

$multiple: True if multiple choices can be selected at the same time; false otherwise.

Returns: Nothing.

function setSelected($index, $isSelected = true)

Description: Selects an option.

Parameters:

$index: An integer index of the option.

$isSelected: True if selected; false otherwise. The default is optional and true.

Returns: Nothing.

function setValue($value)

Description: Sets the value.

Parameters:

$value: A text string.

Returns: Nothing.

A—42 Appendix A: User Interface Foundation Classes

MultiFileUpload
The class MultiFileUpload extends FormField.

Public Methods

function MultiFileUpload($page, $id, $value, $maxFileSize = false,
$invalidMessage = "", $emptyMessage = "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The path.

$maxFileSize: The maximum file size allowed to upload in bytes. Optional.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function getMaxFileSize()

Description: Gets the maximum file size allowed to upload.

Parameters: None.

Returns: Bytes in integer.

See Also: setMaxFileSize().

Appendix A: User Interface Foundation Classes A—43

function setMaxFileSize($maxFileSize)

Description: Sets the maximum file size allowed to upload.

Parameters:

$maxFileSize: Bytes in integer.

Returns: Nothing.

See Also: getMaxFileSize().

NetAddress
The class NetAddress extends FormField.

NetAddressList
The class NetAddressList extends FormField.

Option
This class represents an option for the MultiChoice class.

Applicability
Use Option where MultiChoice is used.

A—44 Appendix A: User Interface Foundation Classes

Public Methods

function Option($label, $value, $isSelected = false)

Description: Constructor.

Parameters:

$label: A Label object.

$value: The value of this option.

$isSelected: True if selected; false otherwise. The default is optional and false.

Returns: Nothing.

function getLabel()

Description: Gets the label.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function setLabel($label)

Description: Sets the label.

Parameters:

$label: A label in string.

Returns: Nothing.

See Also: getLabel().

Appendix A: User Interface Foundation Classes A—45

function isSelected()

Description: Checks if the option is selected.

Parameters: None.

Returns: True if selected; false otherwise

See Also: setSelected().

function setSelected($isSelected)

Description: Selects or unselects the option.

Parameters:

$isSelected: True if selected; false otherwise.

Returns: Nothing.

See Also: isSelected().

function getValue()

Description: Gets the value.

Parameters: None.

Returns: A text string.

See Also: setValue().

function setValue($value)

Description: Sets the value.

Parameters:

$value: A text string.

Returns: Nothing.

See Also: getValue().

A—46 Appendix A: User Interface Foundation Classes

function getFormFields()

Description: Gets all the form fields of the block.

Parameters: None.

Returns: An array of FormField objects.

function getFormFieldLabel($formField)

Description: Gets the label for a form field.

Parameters:

$formField: A FormField object.

Returns: A Label object.

function addFormField($formField, $label = "")

Description: Adds a form field to this option so this option can associate with another form

field.

Parameters:

$formField: A FormField object.

$label: A Label object. Optional.

Returns: Nothing.

Page
This class represents a page on the user interface. It also encapsulates all information about

the page. For example, a Stylist object and an I18n object resides in each Page object.

Applicability
This class is applicable to every page on the user interface that uses UIFC.

Appendix A: User Interface Foundation Classes A—47

Usage
All UIFC pages must have one and only one Page object. All toHtml() calls of any

HtmlComponent must reside within the toHeaderHtml() and toFooterHtml() calls of

the Page object. Otherwise, undefined results may happen.

Public Methods

function Page($stylist, $i18n, $formAction)

Description: Constructor.

Parameters:

$stylist: A Stylist object that defines the style.

$i18n: An I18n object for internationalization.

$formAction: The action of the Form object for this Page. Optional.

function getForm()

Description: Gets the form embedded in the page.

Parameters: None.

Returns: A Form object.

function getI18n()

Description: Gets the I18n object used to internationalize this page.

Parameters: None.

Returns: An I18n object.

See Also: setI18n().

A—48 Appendix A: User Interface Foundation Classes

function setOnLoad($js)

Description: Sets JavaScript to be performed when the page loads.

Parameters:

$js: A string of JavaScript code.

Returns: Nothing.

function getStylist()

Description: Gets the stylist that stylizes the page.

Parameters: None.

Returns: A Stylist object.

See Also: setStylist().

function setStylist($stylist)

Description: Sets the stylist that stylizes the page.

Parameters:

$stylist: A Stylist object that defines the style.

Returns: Nothing.

See Also: getStylist().

function getSubmitAction()

Description: Gets the form action that is used to submit the form.

Parameters: None.

Returns: A string.

Appendix A: User Interface Foundation Classes A—49

function getSubmitTarget()

Description: Gets the target of the embedded form to submit to.

Parameters: None.

Returns: A string.

See Also: setSubmitTarget().

function setSubmitTarget($target)

Description: Sets the target of the embedded form to submit to.

Parameters:

$target: A string.

Returns: Nothing.

See Also: getSubmitTarget().

function toHeaderHtml($style = "")

Description: Translates the header of the page into an HTML representation.

Parameters: None.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

See Also: toFooterHtml().

A—50 Appendix A: User Interface Foundation Classes

function toFooterHtml($style = "")

Description: Translates the footer of the page into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

See Also: toHeaderHtml().

PagedBlock
The class PagedBlock represents a block that has multiple pages with each of them having

their own form fields. The states of form fields on different pages are automatically

maintained.

Applicability
Use this class to separate functionally cohesive, but context distant information. For example,

use it to group basic information into one page and advanced information in another. Do not
use this class simply for navigation purposes, use the navigation system instead.

Usage
To use this class for just one page, create a PagedBlock object and add form fields without

specifying any page IDs. To support multiple pages, after constructing an object, add pages to

it. Afterwards, add form fields to the pages. The page to display can be selected by using

setSelectedId(), but this is optional. The page to display is maintained automatically

based on user interaction. Changed form field values are passed back to the pages as

$formFieldId. After submission, $pageId for visited pages is set to true. Use

getStartMark() and getEndMark() to put HTML code outside the scope of PHP into the

context of pages.

Extends: The class PagedBlock extends HtmlComponent.

Appendix A: User Interface Foundation Classes A—51

Implements: The class PagedBlock implements page and toHTML.

Public Methods

function PagedBlock($page, $id, $label)

Description: Constructor.

Parameters:

$page: The Page object this block resides in.

$id: An identifier in string.

$label: A Label object for the block title.

function getButtons()

Description: Gets all buttons added to the block.

Parameters: None.

Returns: An array of Button objects.

See Also: addButton().

function addButton($button)

Description: Adds a button to the list.

Parameters:

$button: A Button object.

Returns: Nothing.

See Also: getButton().

A—52 Appendix A: User Interface Foundation Classes

function getEndMark($pageId)

Description: Gets the mark for marking the end of an HTML section specifically for a page.

This is useful for adding page specific HTML.

Parameters:

$pageId: The ID of the page in string.

Returns: The mark in string.

See Also: getStartMark().

function getFormFields()

Description: Gets all the form fields of the block.

Parameters: None.

Returns: An array of FormField objects.

See Also: addFormField().

function addFormField($formField, $label = "", $pageId = "")

Description: Adds a form field to this block.

Parameters:

$formField: A FormField object.

$label: A Label object. Optional. Hidden form fields are not shown and therefore do not

need labels.

$pageId: The ID of the page the form field is in; optional if there is only one page.

Returns: Nothing.

See Also: getFormField().

Appendix A: User Interface Foundation Classes A—53

function getDividers()

Description: Gets all dividers added to the block.

Parameters: None.

Returns: An array of Label objects.

See Also: addDivider().

function addDivider($label = "", $pageId = "")

Description: Adds a divider.

Parameters:

$label: A Label object. Optional.

$pageId: The ID of the page the form field is in; optional if there is only one page.

Returns: Nothing.

function getFormFieldLabel($formField)

Description: Gets the label for a form field.

Parameters:

$formField: A FormField object.

Returns: A Label object.

See Also: getDividers().

function getFormFieldPageId($formField)

Description: Gets the page ID of a form field.

Parameters:

$formField: A FormField object.

Returns: The ID of the page in string.

A—54 Appendix A: User Interface Foundation Classes

function getLabel()

Description: Gets the label of the block.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function setLabel($label)

Description: Sets the label of the block.

Parameters:

$label: A label in string.

Returns: Nothing.

See Also: getLabel().

function getId()

Description: Gets the ID of the block.

Parameters: None.

Returns: An identifier in string.

See Also: setId().

function setId($id)

Description: Sets the ID of the block.

Parameters:

$id: An identifier in string.

Returns: A string.

See Also: getId().

Appendix A: User Interface Foundation Classes A—55

function getPageIds()

Description: Gets all the page IDs.

Parameters: None.

Returns: An array of IDs in string.

See Also: addPage().

function getPageLabel($pageId)

Description: Gets the label of a page.

Parameters:

$pageId: The ID of the page in string.

Returns: A Label object.

function addPage($pageId, $label)

Description: Adds a page into the paged block.

Parameters:

$pageId: The ID of the page in string.

$label: A Label object for the page.

Returns: Nothing.

function getSelectedId()

Description: Gets the ID of the selected page.

Parameters: None.

Returns: An identifier in string.

See Also: setSelectedId().

A—56 Appendix A: User Interface Foundation Classes

function setSelectedId($selectedId)

Description: Sets the ID of the selected page.

Parameters:

$selectedId: An identifier in string.

Returns: Nothing.

See Also: getSelectedId().

function getStartMark($pageId)

Description: Gets the mark for marking the start of an HTML section specifically for a page.

Parameters:

$pageId: The ID of the page in string.

Returns: The mark in string.

Password
The class Password extends FormField.

Public Methods

function Password($page, $stylist, $id, $value, $invalidMessage, $emptyMessage
= "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$stylist: A Stylist object that defines the style.

$id: The identifier of this object.

Appendix A: User Interface Foundation Classes A—57

$value: The default value.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function isConfirm()

Description: Checks if the confirm field is shown.

Parameters: None.

Returns: True if a confirm field is shown; false otherwise.

See Also: setConfirm().

function setConfirm($isConfirm)

Description: Sets the configuration flag.

Parameters:

$isConfirm: True if a confirm field is shown; false otherwise.

Returns: Nothing.

See Also: isConfirm().

RemoveButton
This class creates a Remove Button. The application causes a Remove Button action when

the button is clicked.

Extends: The class RemoveButton extends Button.

Implements: The class RemoveButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

ModifyButton, MultiButton, SaveButton, UninstallButton.

A—58 Appendix A: User Interface Foundation Classes

Public Methods

function RemoveButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

SaveButton
This class creates a Save Button. The application causes a Save Button action when the

button is clicked.

Extends: The class SaveButton extends Button.

Implements: The class SaveButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

ModifyButton, MultiButton, RemoveButton, UninstallButton.

Public Methods

function SaveButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

Appendix A: User Interface Foundation Classes A—59

ScrollList
The class ScrollList extends HtmlComponent. The class represents a list of similar

elements to be displayed on pages. This class automatically maintains the number of pages

and determines which one to display.

Applicability
Use this class when a list of similar elements needs to be represented. Do not use this class for

list of different elements.

Usage
This class simply constructs a ScrollList object with a list of entry labels specified. You

can add entries using the addEntry() method.

NOTE: Remember to keep the number of elements of each entry the same as

the number of entry labels.

Public Methods

function ScrollList($page, $id, $label, $entryLabels, $sortables = array())

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$id: An identifier in string.

$label: A Label object for the list.

$entryLabels: An array of Label objects for the entries.

$sortables: An array of indexes of the sortable components. Optional.

A—60 Appendix A: User Interface Foundation Classes

function getAlignments()

Description: Gets the horizontal alignments of items in entries.

Parameters: None.

Returns: An array of alignment strings.

See Also: setAlignments().

function setAlignments($alignments)

Description: Sets the horizontal alignments of items in entries.

Parameters:

$alignments: An array of alignment strings, for example, "", left, center, or right.

"" and empty array element means left. First alignment string for the first item in entries,

second alignment string for the second item in entries and so forth.

Returns: Nothing.

See Also: getAlignments().

function getColumnWidths()

Description: Gets the column widths for items in entries.

Parameters: None.

Returns: An array of widths in integer (pixel) or string (for example, "60%"). The first

element is for label and the second element is for form field.

See Also: setColumnWidths().

Appendix A: User Interface Foundation Classes A—61

function setColumnWidths($columnWidths)

Description: Sets the widths of label and form field.

Parameters:

$widths: An array of widths in numbers (for example, 100), percentage strings (for

example, 25%), ". ", or empty elements, which means no defined width.

Returns: Nothing.

See Also: getColumnWidths().

function addButton($button)

Description: Adds a button to the list.

Parameters:

$button: A Button object.

Returns: Nothing.

See Also: getButtons().

function setSelectAll($selectAll = true)

Description: When select all is on and entries can be selected, a widget is available on

the list to select or unselect all entries at once.

Parameters:

$selectAll: True if select all is enabled; false otherwise.

Returns: Nothing.

See Also: isSelectAll().

A—62 Appendix A: User Interface Foundation Classes

function isSelectAll()

Description: Gets the select all flag.

Parameters: None.

Returns: True if select all is enabled; false otherwise.

See Also: setSelectAll().

function setEmptyMessage($msg = "")

Description: Sets the message to display when the list is empty.

Parameters:

$msg: An I18n tag of the form [[domain.messageId]] for interpolation.

Returns: Nothing.

function getDuplicateLimit()

Description: Gets the upper limit of duplicate buttons at the end of the list.

Parameters: None.

Returns: The limit in integer.

See Also: setDuplicateLimit().

function setDuplicateLimit($duplicateLimit)

Description: Sets the upper limit of duplicate buttons at the end of the list.

Parameters:

$duplicateLimit: The limit in integer.

Returns: Nothing.

See Also: getDuplicateLimit().

Appendix A: User Interface Foundation Classes A—63

function addEntry($entry, $entryId = "", $entrySelected = false, $entryIndex =
-1)

Description: Adds an entry to the list.

Parameters:

$entry: An array of objects that consist the entry.

$entryId: An unique ID for the entry. Optional. If supplied, the entry can be selected.

$entrySelected: True if the entry is selected; false otherwise. Optional.

$entryNumber: The index of the entry on the list. Optional. If not supplied, the entry is

appended to the end of the list.

Returns: Nothing.

function getEntryNum()

Description: Gets the number of entries in the list.

Parameters: None.

Returns: An integer.

See Also: setEntryNum(), addEntry().

function setEntryNum($entryNum)

Description: Tells the list how many entries are there in the list. This is useful when you use

addEntry() only to add a section of the list, so you need to tell the list how many entries are

really there.

Parameters:

$entryNum: An integer.

Returns: Nothing.

See Also: getEntryNum(), addEntry().

A—64 Appendix A: User Interface Foundation Classes

function setEntryCountTags($singular, $plural)

Description: Sets the i18n message tags used in entry count. Message tags have the format

of [[<domain>.<messageId>]].

Parameters:

$singular: A string message tag used when only one entry is listed.

$plural: A string message tag used when many or zero are listed.

Returns: Nothing.

function getEntries()

Description: Gets all the entries added to the list.

Parameters: None.

Returns: An array of entries. Each entry is an array of HtmlComponent objects.

See Also: addEntry().

function getEntryLabels()

Description: Gets the labels for each item of the entries.

Parameters: None.

Returns: An array of Label objects.

See Also: setEntryLabels().

function setEntryLabels($entryLabels)

Description: Sets the labels for each item of the entries.

Parameters:

$entryLabels: An array of Label objects.

Returns: Nothing.

See Also: getEntryLabels().

Appendix A: User Interface Foundation Classes A—65

function getId()

Description: Gets the ID of the block.

Parameters: None.

Returns: An identifier in string.

See Also: setId().

function setId($id)

Description: Sets the ID of the block.

Parameters:

$id: An identifier in string.

Returns: Nothing.

See Also: getId().

function getLabel()

Description: Gets the label of the block.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function setLabel($label)

Description: Sets the label of the block.

Parameters:

$label: A label in string.

Returns: Nothing.

See Also: getLabel().

A—66 Appendix A: User Interface Foundation Classes

function getLength()

Description: Gets the maximum length of pages on the list.

Parameters: None.

Returns: An integer.

See Also: setLength().

function setLength($length)

Description: Sets the maximum length of pages on the list. For example, if length is set to 10,

and there are 25 entries, the list is presented in 3 pages of 10, 10 and 5 entries.

Parameters:

$length: An integer.

Returns: Nothing.

See Also: getLength().

function getPageIndex()

Description: Gets the index of the page the list is presenting.

Parameters: None.

Returns: An integer.

See Also: setPageIndex(), setLength().

function setPageIndex($pageIndex)

Description: Sets the index of the page the list is presenting.

Parameters:

$pageIndex: An integer.

Returns: Nothing.

See Also: getPageIndex(), setLength().

Appendix A: User Interface Foundation Classes A—67

function isSortEnabled()

Description: Checks sorting is done by the list.

Parameters: None.

Returns: True if sorting is done by the list; false otherwise.

See Also: setSortEnabled().

function setSortEnabled($sortEnabled)

Description: Enables or disables sorting done by the list. This method is useful if entries

supplied are already sorted.

Parameters:

$sortEnabled: True if sorting is done by the list; false otherwise.

Returns: Nothing.

See Also: isSortEnabled().

function getSortables()

Description: Gets the sortable components of the entries.

Parameters: None.

Returns: An array of indexes of the sortable components.

See Also: setSortables().

function setSortables($sortables)

Description: Sets the sortable components of the entries.

Parameters:

$sortables: An array of indexes of the sortable components.

Returns: Nothing.

See Also: getSortables().

A—68 Appendix A: User Interface Foundation Classes

function getSortedIndex()

Description: Gets the index of the components that are sorted.

Parameters: None.

Returns: An integer.

See Also: setSortedIndex().

function setSortedIndex($sortedIndex)

Description: Sets the index of the components that are sorted. This method always overrides

user selection. Use setDefaultSortedIndex() if overriding is not desired.

Parameters:

$sortedIndex: An integer. If -1, no sorting is done.

Returns: Nothing.

See Also: getSortedIndex().

function setDefaultSortedIndex($sortedIndex)

Description: Sets the index of the components that are sorted. If user has made selections,

this method does not override it.

Parameters:

$sortedIndex: An integer. If -1, no sorting is done.

Returns: Nothing.

function getSortOrder()

Description: Gets the order of sorting.

Parameters: None.

Returns: ascending or descending.

See Also: setSortOrder().

Appendix A: User Interface Foundation Classes A—69

function setSortOrder($sortOrder = "ascending")

Description: Sets the order of sorting.

Parameters:

$sortOrder: ascending or descending. The default is optional and ascending.

Returns: Nothing.

See Also: getSortOrder().

function sortEntries(&$entries)

Description: Sorts the entries when displaying the list.

Parameters:

$entries: The array of entries to sort.

Returns: Nothing.

function toHtml($style = "")

Description: Translates into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the object or "" if pageIndex is out of range.

SetSelector
The class SetSelector extends FormField.

A—70 Appendix A: User Interface Foundation Classes

Public Methods

function SetSelector($page, $id, $value, $entries, $emptyMessage)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$id: The identifier of this object.

$value: An ampersand (&) separated list for the value set.

$entries: An ampersand (&) separated list for the entry set.

$emptyMessage: The message to be shown upon empty input, if the field is not optional.

Optional.

function getEntriesLabel()

Description: Gets the label of the entry set.

Parameters: None.

Returns: A Label object.

See Also: setEntriesLabel().

function setEntriesLabel($entriesLabel = "")

Description: Sets the label of the entry set.

Parameters:

$entriesLabel: A Label object.

Returns: Nothing.

See Also: getEntriesLabel().

Appendix A: User Interface Foundation Classes A—71

function getValueLabel()

Description: Gets the label of the value set.

Parameters: None.

Returns: A Label object.

See Also: setValueLabel().

function setValueLabel($valueLabel = "")

Description: Sets the label of the value set.

Parameters:

$valueLabel: A Label object.

Returns: Nothing.

See Also: getValueLabel().

function getEntries()

Description: Gets the entry set to choose from.

Parameters: None.

Returns: An ampersand (&) separated list for the entry set.

See Also: setEntries().

function setEntries($entries)

Description: Sets the entry set to choose from.

Parameters:

$entries: An ampersand (&) separated list for the entry set.

Returns: Nothing.

See Also: getEntries().

A—72 Appendix A: User Interface Foundation Classes

SnmpCommunity
The class SnmpCommunity extends FormField.

Public Methods

function toHtml($style = "")

Description: Translates into an HTML representation.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: The HTML that represents the field.

StatusSignal
The class StatusSignal extends HtmlComponent.

Public Methods

function StatusSignal($page, $status, $url = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$status: A string. Possible values are noMonitor, disabled, none, normal,

problem, severeProblem, new, replied, old, success, failure, pending.

$url: The URL to which to link. Optional.

Appendix A: User Interface Foundation Classes A—73

function getStatus()

Description: Gets the status.

Parameters: None.

Returns: A string.

See Also: setStatus().

function setStatus($status)

Description: Sets the status.

Parameters:

$status: A string. Possible values are noMonitor, disabled, none, normal,

problem, severeProblem, new, replied, old, success, failure, pending.

Returns: Nothing.

See Also: getStatus().

function setUrl($url)

Description: Sets the URL to link to.

Parameters:

$url: The URL to link to.

Returns: Nothing.

function setDescribed($described)

Description: Describes the signal to users if set to true.

Parameters:

$described: True if described; false otherwise.

Returns: Nothing.

See Also: isDescribed().

A—74 Appendix A: User Interface Foundation Classes

function isDescribed()

Description: Checks if the signal is described to users.

Parameters: None.

Returns: True if described; false otherwise.

See Also: setDescribed().

NOTE: For information on the Style class, see the Style appendix.

Stylish
The class Stylish gets the default style; subclasses should always override this style.

Public Methods

function getDefaultStyle($stylist)

Description: Gets the default style.

Parameters:

$stylist: A Stylist object that defines the style.

Returns: A Style object.

Stylist
The class Stylist gets a list of all the style resources that are available.

Appendix A: User Interface Foundation Classes A—75

Public Methods

function getAllResources($localePreference)

Description: Gets a list of all the style resources available.

Parameters:

$localePreference: A comma-separated list of preferred locale.

Returns: A hash of style resource ID to name.

function setResource($styleResource, $locale)

Description: Sets the style resource.

Parameters:

$styleResource: An identifier in string that identifies the style resource.

$locale: A locale string for style localization.

Returns: Nothing.

function setStyle($style)

Description: Sets a Style object to the stylist.

Parameters:

$style: The style of the representation in a Style object. Optional. If not supplied,

default style is used.

Returns: Nothing.

See Also: getStyle().

A—76 Appendix A: User Interface Foundation Classes

function getStyle($styleId, $styleVariant = "")

Description: Gets a Style object with the specified id and variant. If no style of the id and

variant can be found, only the id is used. If no style of the id can be found, an empty style

is returned.

Parameters:

$styleId: An identifier in string that identifies the style.

$styleVariant: The variant of the style in string.

Returns: A Style object with properties if the style can be found; empty Style object

otherwise.

See Also: setStyle().

function _Stylist_getResourceId($file, $localePreference)

Description: Gets the style resource ID from a file.

Parameters:

$file: The path of the file in string.

$localePreference: A comma-separated list of preferred locale.

Returns: A style resource ID in string if success; false otherwise.

function _Stylist_load($styleResource, $locale)

Description: Loads in a style from styleDir defined in the configuration file.

Parameters:

$styleResource: An identifier in string that identifies the style resource.

Style <styleDir>/<styleResource>.xml is loaded

$locale: A locale string for style localization; it returns a hash containing all the style

information or empty hash if failed, including key id contains the id in string, key

variant contains the variant in string, and key property contains properties in a hash.

Returns: Nothing.

Appendix A: User Interface Foundation Classes A—77

TextBlock
The class TextBlock extends FormField.

Public Methods

function TextBlock($page, $id, $value = "", $emptyMessage = "")

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$id: The identifier of this object.

$value: A text string. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function getHeight()

Description: Gets the height or number of rows.

Parameters: None.

Returns: An integer.

See Also: setHeight().

function setHeight($height)

Description: Sets the height or number of rows.

Parameters:

$height: An integer.

Returns: Nothing.

A—78 Appendix A: User Interface Foundation Classes

See Also: getHeight().

function getWidth()

Description: Gets the width or number of columns.

Parameters: None.

Returns: An integer.

See Also: getWidth().

function setWidth($width)

Description: Sets the width or number of columns.

Parameters:

$width: The minimum width.

Returns: Nothing.

See Also: getWidth().

function setWrap($val = false)

Description: Sets to wrap or not to wrap text.

Parameters:

$val: True to wrap; false otherwise.

Returns: Nothing.

See Also: isWrap().

Appendix A: User Interface Foundation Classes A—79

function isWrap()

Description: Checks if text should be wrapped or not.

Parameters: None.

Returns: True to wrap; false otherwise.

Returns: Nothing.

See Also: setWrap().

TextField
The class TextField extends FormField.

Public Methods

function TextField($page, $id, $value, $invalidMessage, $emptyMessage)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The default value.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

A—80 Appendix A: User Interface Foundation Classes

function setSize($size)

Description: Sets the size or number of columns.

Parameters:

$size: An integer.

Returns: Nothing.

function setMaxLength($len)

Description: Sets the maximum length or characters the field can take.

Parameters:

$len: An integer.

Returns: Nothing.

TextList
The class TextList extends FormField.

TimeStamp
The class TimeStamp extends FormField.

function TimeStamp($page, $id, $value)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The number of seconds since Epoch.

Appendix A: User Interface Foundation Classes A—81

function getFormat()

Description: Gets the format of the time stamp.

Parameters: None.

Returns: Possible values are date, time, datetime.

See Also: setFormat().

function setFormat($format)

Description: Sets the format of the time stamp.

Parameters:

$format: Possible values are date, time, datetime.

Returns: Nothing.

See Also: getformat().

TimeZone
The class TimeZone extends FormField.

Public Methods

function TimeZone($page, $id, $value)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The number of seconds since Epoch.

A—82 Appendix A: User Interface Foundation Classes

UninstallButton
This class creates an Uninstall Button. The application causes an Uninstall Button

action when the button is clicked.

Extends: The class UninstallButton extends Button.

Implements: The class UninstallButton implements HTMLComponent, Stylish, and

Collatable.

See Also: AddButton, BackButton, CancelButon, DetailButton, ImageButton,

ModifyButton, MultiButton, RemoveButton, SaveButton.

Public Methods

function UninstallButton($page, $action)

Description: Constructor.

Parameters:

$page: The Page object in which this object resides.

$action: The string used within HREF attribute of the A tag.

Url
The class Url extends FormField.

Appendix A: User Interface Foundation Classes A—83

Public Methods

function Url($page, $id, $value, $label = "", $target = "", $invalidMessage =
"", $emptyMessage = "")

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: The URL.

$label: A label in string. Optional.

$target: The target attribute of the A tag. Optional.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function getLabel()

Description: Gets the label.

Parameters: None.

Returns: A label in string.

See Also: setLabel().

function setLabel($label)

Description: Sets the label.

Parameters:

$label: A label in string.

Returns: Nothing.

A—84 Appendix A: User Interface Foundation Classes

See Also: getLabel().

function getTarget()

Description: Gets the target.

Parameters: None.

Returns: The target attribute of the A tag.

See Also: setTarget().

function setTarget($target)

Description: Sets the target.

Parameters:

$target: The target attribute of the A tag.

Returns: Nothing.

See Also: getTarget().

UrlList
The class UrlList extends FormField.

Appendix A: User Interface Foundation Classes A—85

Public Methods

function UrlList($page, $id, $value, $labels = array(), $targets = array(),
$invalidMessage, $emptyMessage)

Description: Constructor.

Parameters:

$page: The Page object this form field resides in.

$id: The identifier of this object.

$value: An URL encoded list of URLs.

$labels: An array of labels in string. Optional.

$targets: An array of target attributes for the A tag. Optional.

$invalidMessage: The message to be shown upon invalid input. Optional.

$emptyMessage: The message to be shown upon empty input if the field is not optional.

Optional.

function getLabels()

Description: Gets the labels.

Parameters: None.

Returns: An array of label strings.

See Also: setLabels().

function setLabels($labels)

Description: Sets the labels.

Parameters:

$labels: An array of labels in string.

Returns: Nothing.

A—86 Appendix A: User Interface Foundation Classes

See Also: getLabels().

function getTargets()

Description: Gets the targets attribute.

Parameters: None.

Returns: The targets attribute.

See Also: getTargets().

function setTargets($targets)

Description: Sets the targets attribute.

Parameters:

$targets: The targets attribute.

Returns: Nothing.

UserName
The class UserName extends FormField.

UserNameList
The class UserNameList extends FormField.

VerticalCompositeFormField
The class VerticalCompositeFormField extends CompositeFormField.

Appendix B

Utility Classes

This appendix describes three utility classes:

• ArrayPacker

• Error

• ServerScriptHelper

These classes work in conjunction with the UIFC classes to help you create user interface

pages.

ArrayPacker
ArrayPacker provides a library of functions for packing and unpacking arrays or hashes to

or from strings. The functions use CCE preferred array packing format, which is URL-

encoded elements delimited by ampersands (&). For example, an array of first, seco&d,

and _third is packed into &first&seco%26d&_third&.

Applicability
This class can be used anywhere where arrays or hashes need to be acquired from or put into

CCE.

B—2 Appendix B: Utility Classes

Public Methods

function arrayToString($array)

Description: Converts an array to a string.

Parameters:

$array: An array of strings.

Returns: A packed array in string.

function stringToArray($string)

Description: Converts a string to an array.

Parameters:

$string: A packed array in string.

Returns: An array of strings.

function isInArrayString($needle, $hayStack)

Description: Checks if a string is in an array.

Parameters:

$needle: The string to find.

$hayStack: A packed array in string.

Returns: True if string found; false otherwise.

Appendix B: Utility Classes B—3

function hashToString($array)

Description: Converts a hash (associative array) to a string. For example, ["foo"] =

"bar", [1] = "one" => "&foo=bar&1=one&"

Parameters:

$array: A hash.

Returns: A packed hash in string.

function stringToHash($string)

Description: Converts a string to a hash (associative array). For example,

"&foo=bar&1=one&" => ["foo"] = "bar", [1] = "one"

Parameters:

$string: A packed hash in string.

Returns: A hash.

Error
This class represents an error.

Public Methods

function Error($message, $vars = array())

Description: Constructor.

Parameters:

$message: An internationalizable string, that is, it can have [[domain.id]] tags.

$vars: A hash of variable names to values for localizing the string.

B—4 Appendix B: Utility Classes

function getMessage()

Description: Gets the error message.

Parameters: None.

Returns: An internationalizable string.

See Also: setMessage().

Optional Methods

function setMessage($message, $vars = array())

Description: Sets the error message.

Parameters:

$message: An internationalizable string, that is, it can have [[domain.id]] tags.

$vars: A hash of variable names to values for localizing the string.

Returns: Nothing.

function getVars()

Description: Gets the hash for string localization.

Parameters: None.

Returns: A hash of variable names to values for localizing the message string. Optional.

See Also: setMessage().

Appendix B: Utility Classes B—5

function setVar($key, $val)

Description: Adds a variable to the string localization hash.

Parameters:

$key: The key of the variable in string.

$val: The value of the variable in string.

Returns: Nothing.

See Also: getVars().

ServerScriptHelper
This class is designed to facilitate the development of server-side scripts. It is a library of

commonly used functions.

Applicability
This class is applicable to server-side scripts that use session, UIFC, I18n, and CCE.

Usage
This class constructs a new ServerScriptHelper at the start of every server-side script. It

automatically gets session information, identifies the logged-in user, and connects to CCE to

find out more information about the user. The get method can be used to get information

about the script.

NOTE: Always call destructor() at the end of the scripts.

B—6 Appendix B: Utility Classes

Public Methods

function ServerScriptHelper($sessionId = "", $loginName = "")

Description: Constructor.

Parameters:

$sessionId: The session ID in string. Optional. The global $sessionId is used if a

value is not supplied.

$loginName: The login name of the user in string. Optional. The global $loginName is

used if a value is not supplied.

function destructor()

Description: Destructor.

Parameters: None.

function getFile($filename)

Description: Returns the contents of a file using the Unix permissions granted to the current

CCE user.

Parameters:

$filename: The filename of the file to be opened.

Returns: The contents of the file.

function popen($program)

Description: Opens a read-only stream wrapped by CCE.

Parameters:

$cmd: A string containing the program to execute, including the path and any arguments.

Returns: A file handle to be read from.

Appendix B: Utility Classes B—7

function shell($cmd, &$output)

Description: Allows one to execute a program as the currently logged-in user.

Parameters:

$cmd: A string containing the program to execute, including the path and any arguments.

&$output: Output variable that picks up the output sent by the program.

Returns: 0 on success; error number on error.

function fork($cmd)

Description: Allows one to fork a program as the currently logged-in user.

NOTE: No interaction between the called program and the caller can be made.

Parameters:

$cmd: A string containing the program to execute, including the path and any arguments.

Returns: 0 on success; error number on error.

function getAccessRights()

Descriptions: Gets an array of access rights.

Parameters: None.

Returns: An array of access rights in strings.

function getCceClient()

Description: Gets a connected and authenticated CceClient.

Parameters: None.

Returns: A CceClient object.

B—8 Appendix B: Utility Classes

function getHtmlComponentFactory($i18nDomain, $formAction = "")

Description: Gets an HtmlComponentFactory object to construct HtmlComponents.

Parameters:

$i18nDomain: The I18n domain used for construction.

$formAction: The action of the form in which HtmlComponents reside.

Returns: An HtmlComponentFactory object.

function toErrorJavascript($errors)

Description: Represents errors in JavaScript.

Parameters:

$errors: An array of Error objects.

Returns: JavaScript if error occurred or "" otherwise.

function getI18n($domain = "", $httpAcceptLanguage = "")

Description: Gets the right I18n object.

Parameters:

$domain: the domain of the I18n object. Optional.

$httpAcceptLanguage: The HTTP_ACCEPT_LANGUAGE header. Optional. Global

HTTP_ACCEPT_LANGUAGE is used if a value is not supplied.

Returns: An I18n object.

Appendix B: Utility Classes B—9

function getLocalePreference($httpAcceptLanguage = "")

Description: Gets the preferred locale specified by the logged-in user if browser is

preferred, locale from HTTP_ACCEPT_LANGUAGE is used. If no locale is preferred, use the

defaultLocale specified in ui.cfg.

Parameters:

$httpAcceptLanguage: The HTTP_ACCEPT_LANGUAGE header. Optional. Global

HTTP_ACCEPT_LANGUAGE is used if a value is not supplied.

Returns: A list of locales in string separated by commas.

function getLoginName()

Description: Gets the name of the logged-in user.

Parameters: None.

Returns: A login name in string.

function getStylePreference()

Description: Gets the style preferred by the logged-in user. If user has no preference or if the

preference is not available, use any style available on the system.

Parameters: None.

Returns: A style ID in string.

function getStylist()

Description: Gets the Stylist who gives correct styles according to the style preference of

the logged-in user.

Parameters: None.

Returns: A Stylist object.

B—10 Appendix B: Utility Classes

function toHandlerHtml($returnUrl = "", $errors = array())

Description: Gets the HTML page to be printed out by UI page handlers.

Parameters:

$returnUrl: The URL the handler returns to. Optional.

$errors: An array of Error objects for errors occurred within the handler. Optional.

Returns: The HTML page to be printed out by UI page handlers.

function getCListStyleJavascript()

Description: Gets JavaScript to set style for collapsible list.

Parameters: None.

Returns: JavaScript in string.

function getFlowControlStyleJavascript()

Description: Gets JavaScript to set style for flow navigation.

Parameters: None.

Returns: JavaScript in string.

function getInfoStyleJavascript()

Description: Gets JavaScript to set style for info.

Parameters: None.

Returns: JavaScript in string.

getTabStyleJavascript()

Description: Gets JavaScript to set style for tab.

Parameters: None.

Returns: JavaScript in string.

Appendix B: Utility Classes B—11

function getTitleStyleJavascript()

Description: Gets JavaScript to set style for title.

Parameters: None.

Returns: JavaScript in string.

B—12 Appendix B: Utility Classes

Appendix C

About Style

This appendix provides a comprehensive description of the Style file. See “How Styles Work”

on page 3–10 for an overview.

Style Files
Style files are XML files located in /usr/sausalito/ui/style/. Each of these files

contains all the information about a certain style resource. These XML files can contain

styleResource, style, and property elements.

An example of a style file is goodlooking.xml:

<styleResource name="Good Looking">

 <style id="Block">

 <property name="backgroundColor" value="#FFFFFF"/>

 </style>

 <style id="Label">

 <property name="color" value="#FFFFFF"/>

 </style>

</styleResource>

Style files must be enclosed by a styleResource element. This element can have these

attributes:

name ::= internationalizable string

name is the name of the style resource. The interpolate function of the I18n module is used to

internationalize this string.

Within styleResource, there are style elements. Each style element describes one style.

C—2 Appendix C: About Style

The attributes of this element are:

id ::= [a-zA-Z0-9_\-]+

This is the identifier of the style.

variant ::= [a-zA-Z0-9_\-]+

NOTE: The variant attribute is optional. It acts as a secondary identifier of

the style. Each style in the same style file must have a unique id and variant.

Within style elements, there are property elements. Each of these elements describes a

property of the style. The attributes are:

name ::= [a-zA-Z0-9_\-]+

Each property is identified by a name.

target ::= [a-zA-Z0-9_\-]+

The target attribute is optional. It acts as a secondary identifier and specifies the target to

which the property applies. Properties within a style element must not have the same names

and targets.

value ::= string

where string is the value of the property.

Supported Styles
Different properties have different value types. These are commonly used types for the

properties.

Boolean
 String "true" or "false".

Appendix C: About Style C—3

Color
 RGB format (for example, #RRGGBB) or names (for example, green).

Positive Integer
Positive integers including 0.

URL
A URL.

Common Properties
Common properties are properties used commonly in many different styles.

backgroundColor
Description: The background color of the page.

NOTE: Do not use with property backgroundImage.

Value Type: Color.

backgroundImage
Description: The background image of the page.

NOTE: Do not be use with property backgroundColor.

Value Type: URL.

C—4 Appendix C: About Style

borderThickness
Description: The pixel thickness of border.

Value Type: Positive integer.

color
Description: The color of text.

Value Type: Color.

fontFamily
Description: The family of the font that is used.

Value Type: The value type is the same as CSS-1 font-family definition. Generic families are

cursive, fantasy, monospace, sans-serif, and serif.

fontSize
Description: The size of the font.

Value Type: The value type is the same as CSS-1 font-size definition. For example, 12 point,

large or 120%.

fontStyle
Description: The style of the font.

Value Type: The value type is the same as CSS-1 font-style definition. For example, normal

or italic.

Appendix C: About Style C—5

fontWeight
Description: The weight (boldness) of the font.

Value Type: The value type is the same as CSS-1 font-weight definition. For example, bold or

900.

textDecoration
Description: The decoration of text.

Value Type: The value type is the same as CSS-1 text-decoration definition. For example,

blink, line-through, none, or underline.

width
Description: The pixel width.

Value Type: Positive integer.

Styles

Bar
Description: In UIFC, the Bar class represents a bar chart.

Common Properties: color, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration.

Unique Properties: None.

C—6 Appendix C: About Style

emptyImage
Description: Image for the empty portion of the bar.

Value Type: URL.

Possible Targets: None.

endImage
Description: Image for the end portion of the bar.

Value Type: URL.

Possible Targets: None.

filledImage
Description: Image for the filled portion of the bar.

Value Type: URL.

Possible Targets: None.

startImage
Description: Image for the start portion of the bar.

Value Type: URL.

Possible Targets: None.

Button
Description: The Button class represents a clickable button; see “Button” on page A–5.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

Appendix C: About Style C—7

CancelButton
Description: The CancelButton class represents a Cancel button; see “CancelButton” on

page A–8.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

Label
Description: The Label class represents a text label with description; see “Label” on

page A–33.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

ModifyButton
Description: The ModifyButton class represents a button for the modify action; see

“ModifyButton” on page A–36.

Unique Properties:

modifyIcon: Icon for the button.

Value Type: URL.

Possible Targets: None.

C—8 Appendix C: About Style

MultiChoice
Description: The MultiChoice class represents a widget for selecting choices; see

“MultiChoice” on page A–39. It has the following attributes:

Label: Represents labels of choice.

formFieldLabel: Represents labels of formfields, if the choice has them.

subscript: Represents subscripts used in the MultiChoice class, such as optional.

Common Properties: color, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration.

Possible Targets: choiceLabel, formFieldLabel, subscript.

Page
Description: The Page class represents a user interface page; see “Page” on page A–46.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

Parameters:

center: Defines if all the content of the page should be centered.

Value Type: Boolean.

Possible Targets: None.

Appendix C: About Style C—9

PagedBlock
Description: The PagedBlock class represents blocks that group form fields together; see

“PagedBlock” on page A–50. It has the following attributes:

dividerCell: Represents the cells that act as dividers.

dividerLabel: Represents labels in divider cells.

form: Represents the form.

FieldCell: Represents cells in which form fields reside.

labelCell: Represents cells in which form field labels reside.

labelLabel: Represents labels in the form field label cells.

subscript: Represents subscripts used in PagedBlock class, such as optional.

tabSelected: Represents the selected tab.

tab: Represents the tab.

Unselected: Represents tabs that are not selected.

titleCell: Represents the cell in which titleLabel resides.

titleLabel: Represents the label for the title.

Common Properties: backgroundColor, backgroundImage, borderThickness,
color, fontFamily, fontSize, fontStyle, fontWeight, textDecoration.

Unique Properties:

borderColor: The color of the block border.

Possible Targets: dividerLabel, labelLabel, subscript, tabSelected,
tabUnselected, titleLabel, width.

Value Type: Color.

C—10 Appendix C: About Style

dividerHeight
Description: The pixel height of block dividers. If there is content within the divider and it is

taller than this value, the divider is expanded to be greater than this value to fit the content.

Value Type: Positive integer.

Possible Targets: None.

icon
Description: The icon image to indicate if the tab is selected or not.

Value Type: URL.

Possible Targets: tabSelected, tabUnselected.

Password
Description: The Password class represents a password. It has the following attribute:

subscript: Represents subscripts used in the Password class, such as repeat.

Common Properties: color, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration.

Possible Targets: subscript.

RemoveButton
Description: The RemoveButton class represents a button for the remove action; see

“RemoveButton” on page A–57.

Unique Properties: None.

Appendix C: About Style C—11

removeIcon
Description: Icon for the button.

Value Type: URL.

Possible Targets: None.

SaveButton
Description: The SaveButton class represents a button for the save action; see

“SaveButton” on page A–58.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

SetSelector
Description: The SetSelector class represents a widget to select a subset out of a full set;

see “SetSelector” on page A–69.

Parameters:

addIcon: The icon for the add button to add entries to the set.

Value Type: URL.

Possible Targets: None.

addIconGray
Description: The icon for the add button to add entries to the set in grayed out state.

Value Type: URL.

Possible Targets: None.

C—12 Appendix C: About Style

removeIcon
Description: The icon for the remove button to add entries to the set.

Value Type: URL.

Possible Targets: None.

removeIconGray
Description: The icon for the remove button to add entries to the set in grayed out state.

Value Type: URL.

Possible Targets: None.

ScrollList
Description: The ScrollList class represents a scrollable list; see “ScrollList” on

page A–59. It has the following attributes:

entryCell: Represents cells in which entries reside.

labelCell: Represents cells in which labels reside.

labelLabel: Represents labels in label cells.

titleCell: Represents the cell in which the title resides.

titleLabel: Represents the title label.

Common Properties: backgroundColor, backgroundImage.

Possible Targets: entryCell, labelCell, titleCell.

Appendix C: About Style C—13

borderThickness
Description: The thickness of the scroll list border.

Common Properties: color, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration.

Possible Targets: entryCell, labelLabel, titleLabel.

Unique Properties: None.

borderColor
Description: The color of the scroll list border.

Value Type: URL.

Possible Targets: None.

sortAscendingIcon
Description: The icon for the button to sort entries in ascending order, used in unsorted

columns.

Value Type: URL.

Possible Targets: None.

sortDescendingIcon
Description: The icon for the button to sort entries in descending order, used in unsorted

columns.

Value Type: URL.

Possible Targets: None.

C—14 Appendix C: About Style

sortedAscendingIcon
Description: The icon for the button to sort entries in ascending order, used in the sorted

column.

Value Type: URL.

Possible Targets: None.

sortedDescendingIcon
Description: The icon for the button to sort entries in descending order, used in the sorted

column.

Value Type: URL.

Possible Targets: None.

StatusSignal
Description: The StatusSignal class represents a status signal; see “StatusSignal” on

page A–72.

Unique Properties: None.

failureIcon
Description: The icon to indicate a failure state.

Value Type: URL.

Possible Targets: None.

Appendix C: About Style C—15

newIcon
Description: The icon to indicate a new state.

Value Type: URL.

Possible Targets: None.

noneIcon
Description: The icon to indicate a none state.

Value Type: URL.

Possible Targets: None.

normalIcon
Description: The icon to indicate a normal state.

Value Type: URL.

Possible Targets: None.

oldIcon
Description: The icon to indicate an old state.

Value Type: URL.

Possible Targets: None.

C—16 Appendix C: About Style

problemIcon
Description: The icon to indicate a problem state.

Value Type: URL.

Possible Targets: None.

repliedIcon
Description: The icon to indicate a replied state.

Value Type: URL.

Possible Targets: None.

severeProblemIcon
Description: The icon to indicate a severe problem state.

Value Type: URL.

Possible Targets: None.

successIcon
Description: The icon to indicate a success state.

Value Type: URL.

Possible Targets: None.

Appendix C: About Style C—17

cListNavigation
Description: This is used for the collapsible list navigation system.

Unique Properties:

collapsibleListWidth: The pixel width of the collapsible list widget.

Value Type: Positive integer.

Possible Targets: None.

infoHeight
Description: The pixel height of the information widget.

Value Type: Positive integer.

Possible Targets: None.

tabHeight
Description: The pixel height of the tab widget.

Value Type: Positive integer.

Possible Targets: None.

collapsibleList
Description: The collapsible list widget in the collapsible list navigation system.

Common Properties: backgroundColor, backgroundImage.

Possible Targets: list, page.

C—18 Appendix C: About Style

borderThickness
Description: The thickness of the scroll list border.

Common Properties: color, fontFamily, fontSize, fontStyle, fontWeight,
textDecoration.

Possible Targets: selected, unselected width.

Unique Properties: None.

collapsed Icon
Description: The icon to indicate an item with children is collapsed.

Value Type: URL.

Possible Targets: None.

expandedIcon
Description: The icon to indicate an item with children is expanded.

Value Type: URL.

Possible Targets: None.

selectedIcon
Description: The icon to indicate an item without children is selected.

Value Type: URL.

Possible Targets: None.

Appendix C: About Style C—19

unselectedIcon
Description: The icon to indicate an item without children is unselected.

Value Type: URL.

Possible Targets: None.

info
Description: The information widget used in several navigation systems.

Common Properties: backgroundColor, backgroundImage.

Unique Properties: None.

Possible Targets: error, help, color, fontFamily, fontSize, fontStyle,
fontWeight, textDecoration.

downIcon
Description: The icon for the button for going down.

Value Type: URL.

Possible Targets: error, help.

downIconGray
Description: The icon for the button for going down in grayed out state.

Value Type: URL.

Possible Targets: error, help.

C—20 Appendix C: About Style

typeIcon
Description: The icon to indicate the type of the information.

Value Type: URL.

Possible Targets: error, help.

upIcon
Description: The icon for the button for going up.

Value Type: URL.

Possible Targets: error, help.

upIconGray
Description: The icon for the button for going up in grayed out state.

Value Type: URL.

Possible Targets: error, help.

tab
Description: The tab widget used in the collapsible list navigation system.

Common Properties: backgroundColor, backgroundImage, color, fontFamily,
fontSize, fontStyle, fontWeight, textDecoration.

Possible Targets: selected, unselected.

Unique Properties: None.

Appendix C: About Style C—21

logo
Description: The logo to be shown next to the tabs.

Value Type: URL.

Possible Targets: None.

selectedImageLeft
Description: The image put on the left of the selected tab item.

Value Type: URL.

Possible Targets: None.

selectedImageRight
Description: The image put on the right of the selected tab item.

Value Type: URL.

Possible Targets: None.

unselectedImageLeft
Description: The image put on the left of unselected tab items.

Value Type: URL.

Possible Targets: None.

C—22 Appendix C: About Style

unselectedImageRight
Description: The image put on the right of unselected tab items.

Value Type: URL.

Possible Targets: None.

Appendix D

Base Data Types

This appendix contains base data type definitions for the the Qube 3 software architecture

architecture.

CAUTION! Do not reuse or redefine the base types listed below. If you modify

the definitions of the base types, it can cause a data collision where it might not

be clear which data type definition is used. If you need to extend the data type

definitions, append your vendor name to them, for example,

vendor_use.emailaddress.

Scalar
Scalar is any data.

<typedef name="scalar" type="re" data="^.*$"/>

Word
Word is any non-whitespace data.

<typedef name="word" type="re" data="^[^

\t\n\r\v\f]+$"/>

Alphanum
Alphanum is any alphanumeric data.

<typedef name="alphanum" type="re" data="^[A-Za-z0-
9]+$"/>

D—2 Appendix D: Base Data Types

Alphanum_plus
Alphanum_plus is alphanumeric data plus an approved subset of punctuation.

<typedef

 name="alphanum_plus"

 type="re"

 data="^[A-Za-z0-9._-]+$"

/>

Int
Int is a signed integer.

<typedef name="int" type="re"

data="^(\-?[1-9][0-9]*)|(0)$"/>

Uint
Uint is an unsigned integer.

<typedef name="uint" type="re"

data="^([1-9][0-9]*)|(0)$"/>

Boolean
Boolean is empty or 0 for false; any data for true.

<typedef name="boolean" type="re" data=".*"/>

Appendix D: Base Data Types D—3

Ipaddr
Ipaddr is an IP address.

<typedef name="ipaddr" type="re"

data="^(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\
.(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-
9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-9])|([1-
9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])$"

/>

Network
Network defines a network number, such as 10.9.0.0/16.

<typedef name="network" type="re"

data="^(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\
.(([0-9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-
9])|([1-9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])\.(([0-9])|([1-
9][0-9])|(1[0-9][0-9])|2[0-4][0-9]|25[0-5])/([1-9]|[12][0-9]|3[0-
2])$"

/>

Email Address
Email_address is the address of the email user, for example, janedoe@sun.com.

<typedef

 name="email_address"

 type="re"

 data="^[a-zA-Z\-_\d\.]+\@[a-zA-Z\-_\d\.]+$"

/>

D—4 Appendix D: Base Data Types

Netmask
Netmask can be either a number from 1 to 32 or a dot-quaded IP mask.

<typedef name="netmask" type="re"

data="^(([1-9])|([12][0-9])|(3[0-
2])|((0|128|192|224|240|248|252|254|255)\.0\.0\.0)|255\
.((0|128|192|224|240|248|252|254|255)\.0\.0)|255\.255\
.((0|128|192|224|240|248|252|254|255)\.0)|255\.255\.255\
.((0|128|192|224|240|248|252|254|255)))$"

/>

Fqdn
Fqdn is the fully-qualified domain name, for example, www.sun.com.

<typedef name="fqdn" type="re"

 data="^([A-Za-z0-9][A-Za-z0-9\-]*\.)+[A-Za-z]{2,3}$"

/>

Hostname
Hostname is defined as follows:

<typedef name="hostname" type="re"

 data="^[A-Za-z0-9][A-Za-z0-9\-]*(\.[A-Za-z0-9][A-Za-z0-9\-]*)*$"

/>

Appendix D: Base Data Types D—5

Domainname
Domainname is defined as follows:

<typedef name="domainname" type="re"

 data="^(localdomain)|(([A-Za-z0-9][A-Za-z0-9\-]*\.)+[A-Za-
z]{2,3})$"

/>

<typedef

 name="password"

 type="re"

 data="^[^\001-\037\177]{3,16}$"

/>

D—6 Appendix D: Base Data Types

Appendix E

Cobalt System Configuration Protocol

This appendix describes the details of the Cobalt System Configuration Protocol (CSCP). For

an overview of how CSCP works with the rest of the Qube 3 software architecture, see

Chapter 5, “Introducing the Cobalt Configuration Engine”. CSCP enables communication

between a client application and CCE or when CCE communicates with a handler.

When a CSCP session begins, the server starts the connection by transmitting a CSCP header

to the client. This header is described below in lazy-BNF notation.

Header ::= Identifier-Line ObjectID-Line? Ready-Line

Identifier-Line ::= "100 CSCP/" version nl

ObjectID-Line ::= "101 EVENT " object-id "." (namespace ".")?
property

Ready-Line ::= "200 Ready" nl

A handler is triggered because of some change in an object. The ObjectID-Line tells you

the name of the ObjectID and the namespace.

ObjectID-Line and Attribute-Line are only meaningful in the context of CCEd

communicating with an event handler.

Chapter Contents

Example Headers

Messages

CSCP Command Summary

Common Syntax Definitions

CSCP Commands

CSCP Handler Extensions

Built-in Properties of Objects

E—2 Appendix E: Cobalt System Configuration Protocol

Example Headers
When CCE connects to a client or a handler, the header is sent.This is an example header that

a UI client would expect to see when connecting to CCEd:

100 CSCP/1.0

200 Ready

These are example headers that an event handler would expect to see when CCEd connects to

the handler:

 100 CSCP/1.0

 101 Event 5._CREATE

 200 OK

 100 CSCP/1.0

 101 Event 27.Foo.enable

 200 OK

 100 CSCP/1.0

 101 Event 93..enable

 200 OK

Appendix E: Cobalt System Configuration Protocol E—3

Messages
This section explains patterns that repeatedly occur in CSCP. All lines sent by the server

consist of a numeric code and a set of arguments. The first digit (hundreds place) of the code

defines whether the message is informational, a warning, a success, or a failure.

 100-199 = Informational

 200-299 = Success

 300-399 = Warning

 400-499 = Failure

 900-999 = System issued message (can be sent at any time)

A response is made up of any number of 100 or 300 lines, finishing with a single 200 or 400

line. Response codes are shared between different commands. However, messages with the

same code always share the same syntax, regardless of the command the message is

responding to.

The lowest 30 codes of each 100 and 300 block and the lowest 10 codes of each 200 and 400

block is reserved for common messages. Codes outside those blocks are allocated as needed.

The following is a more detailed breakdown of allocations:

 "100 CSCP/" version

 "101 EVENT oid.event"

 "102 DATA " key " = " val

 "103 DATA " key " = " val (uncommitted)

 "104 OBJECT " oid

 "105 NAMESPACE " namespace

 "106 INFO " msg

 "107 CREATED"

 "108 DESTROYED"

 "109 SESSIONID " session-id-string

 "110 CLASS " classname

 111-119 : reserved

 120-129 : reserved for protocol headers

 130-199 : allocated for commands

E—4 Appendix E: Cobalt System Configuration Protocol

 "200 READY"

 "201 OK"

 "202 GOODBYE"

 203-209 : reserved

 210-299 : allocated for commands

 "300 UNKNOWN OBJECT " oid

 "301 UNKNOWN CLASS " class

 "302 BAD DATA " oid " " key " " value

 "303 UNKNOWN NAMESPACE " namespace

 "304 PERMISSION DENIED" reason

 "305 WARN " msg

 "306 ERROR " msg

 "307 OUT OF MEMORY"

 308-329 : reserved

 330-399 : allocated for commands

 "400 NOT READY"

 "401 FAIL"

 "402 BAD COMMAND"

 "403 BAD PARAMETERS"

 404-410 : reserved

 420-499 : allocated for commands

 "998 SHUTTING DOWN"

 "999 ENGINE ON FIRE"

Appendix E: Cobalt System Configuration Protocol E—5

CSCP Command Summary
This is the total set of CSCP commands:

These additional commands are available in handler mode, that is, when the CCEd is

communicating with a handler:

See Chapter 5 for the Perl, C, and PHP libraries of CSCP commands.

Table E–1 CSCP commands

Command Description

AUTH Authenticates as a user, to get that user’s access privileges (starts a new

session).

AUTHKEY Authenticates to an already existing session.

ENDKEY Expires the current sessionid.

WHOAMI Returns the OID of the currently authenticated user.

BYE Closes the connection.

COMMIT Triggers any postponed handler activity.

CREATE Creates a new object of a certain class.

DESTROY Destroys an object.

FIND Finds all objects that match a given criteria.

GET Gets all properties of a certain object.

NAMES Lists namespaces associated with a class (for example, services).

CLASSES Lists all classes.

SET Sets the properties of a certain object.

Table E–2 Additional CSCPcommands for handler mode

Command Description

BADDATA Reports that an unrecognized attribute or value was passed.

INFO Reports a piece of information.

WARN Reports a warning or error.

E—6 Appendix E: Cobalt System Configuration Protocol

Common Syntax Definitions
Syntax for commands is described in lazy-BNF notation, that is, it is similar to BNF, but is

human readable.

sp ::= [\t]+ (any number of whitespace characters)

nl ::= ’\n’

CLASSNAME ::= "SITE" | "USER" | "GROUP" | "MAILLIST"

alphanumeric_string ::= [A-Za-z0-9_]+

quoted_string ::= "\"" [^\"]* "\""

stringvalue ::= quoted_string | alphanumeric_string

KEY ::= stringvalue

VALUE ::= stringvalue

OID ::= stringvalue

CSCP Commands

The AUTH Command
The AUTH command authenticates the client to have the permissions of the specified user. To

re-AUTH to the default (anonymous) user, specify username and password as blank strings

("").

Syntax:

"AUTH" sp USERNAME sp PASSWORD nl

USERNAME: The user’s username.

PASSWORD: The user’s password (unencrypted).

Return Values: 109, 201, 401.

Appendix E: Cobalt System Configuration Protocol E—7

The AUTHKEY Command
The AUTHKEY command authenticates to an existing session, assuming that sessions’s id and

privileges.

Syntax:

"AUTHKEY" sp USERNAME sp SESSION-KEY nl

SESSION-KEY: An alphanumeric string that uniquely identifies a session-user pair.

Return Values: 109, 201, 401.

The ENDKEY Command
The ENDKEY command alerts the server to immediately expire the current sessionid and not

allow it as a parameter to AUTHKEY.

Syntax:

"ENDKEY" nl

Return Values: 201.

The CREATE Command
The CREATE command takes a class name and a list of attributes and creates a new object of

that type.

Syntax:

"CREATE" sp CLASSNAME (sp KEY sp "=" sp VALUE)* nl

Informational Responses: 104.

Warning Responses: 301, 302, 303, 304.

Return Values: 201, 401.

E—8 Appendix E: Cobalt System Configuration Protocol

The DESTROY Command
The DESTROY command takes an OID and destroys the object.

Syntax:

"DESTROY" sp oid

Informational Responses: 300, 304.

Return Values: 201, 401.

The SET Command
The SET command modifies the attributes of an existing object.

Syntax:

"SET" sp OID ("." NAMESPACE)? (sp KEY sp? "=" sp? VALUE)* nl

Warning Responses: 300, 302, 303, 304.

Return Values: 201, 401.

The GET Command
The GET command returns all of the current attributes for the specified object. In the face of

transactions (such as a handler’s view of the ODB), GET returns both the previous state and

the current state, in that order. There are two INFO messages to denote that an object was just

created (has no previous state) or just destroyed (has no current state).

Syntax:

"GET" sp OID ("." NAMESPACE)? nl

Informational Responses: 102, 103, 107, 108.

Warning Responses: 300, 303.

Return Values: 201, 401.

Appendix E: Cobalt System Configuration Protocol E—9

The COMMIT Command
The COMMIT command triggers any deferred activity.

Syntax:

"COMMIT" nl

Informational Responses: 106.

Warning Responses: 305.

Return Values: 201, 401.

The NAMES Command
The NAMES command returns a list of all defined namespaces for a class.

Syntax:

"NAMES" sp (OID|CLASSNAME) nl

Informational Responses: 105.

Warning Responses: 300, 301.

Return Values: 201, 401.

The CLASSES Command
The CLASSES command returns a list of all defined classes.

Syntax:

"CLASSES" nl

Informational Responses: 110.

Return Values: 201.

E—10 Appendix E: Cobalt System Configuration Protocol

The FIND Command
The FIND command searches through object space to find all objects of a given class that

match a criteria.

Syntax:

"FIND" sp CLASSNAME (sp ("SORT"|"SORTNUM") sp SORTKEY)?

(sp KEY sp? "=" sp? VALUE)* nl

FIND searches within the set of objects that belong to class CLASSNAME. FIND finds all of the

objects of that class whose properties match the properties set forth in the KEY-VALUE list.

KEY may be of the form PROPERTY or NAMESPACE.PROPERTY.

If the SORT option is specified, the objects are returned in order, sorted alphanumerically from

lowest to highest according to the value of the SORTKEY property of each object. SORTKEY

may be of the form PROPERTY or NAMESPACE.PROPERTY.

If the SORTNUM option is specified, the objects are returned in order as with the SORT option,

except that the objects are sorted in numeric order, that is, 9 < 10, as opposed to alphanumeric

order, that is, 9 > 10, because “9” comes after “1”.

SORTNUM is capable of handling the sorting of integers (“11”), floating point numbers

(“12.54”), and version numbers (“v1.5.3.27”). Version numbers are special numbers that must

start with the letter “v”. They differ from floating point numbers in the sense that every group

of digits within the version numbers is compared like an integer. For example:0.15 is less than

0.2 (floating point numbers), but v0.15 is greater than v0.2 (version numbers).

Informational Responses: 104.

Warning Responses: 301.

Return Values: 201, 401.

Appendix E: Cobalt System Configuration Protocol E—11

The WHOAMI Command
Syntax:

"WHOAMI" nl

If the session is currently authenticated, WHOAMI returns the OID of the user object that the

connection is currently authenticated as. If the connection is not authenticated, or is

authenticated as "" (anonymous), the OID returned is -1.

Informational Responses: 104.

Return Values: 201.

The BYE Command
The Bye-Condition field is optional and is ignored unless CCEd is talking to an event

handler, that is, in handler mode.

In a handler context, if the "Bye-Condition" is omitted (or if the handler exits without issuing

a "BYE" command), the handler is assumed to have failed (for example, as if the handler had

issued the command "BYE FAIL").

Syntax:

"BYE" Bye-Condition? nl

Bye-Condition ::= (Bye-Success | Bye-Failure | Bye-Defer)

Bye-Success ::= "SUCCESS"

Bye-Failure ::= "FAIL"

Bye-Defer ::= "DEFER"

Return Values: 202.

E—12 Appendix E: Cobalt System Configuration Protocol

CSCP Handler Extensions

The BADDATA Command
The BADDATA command is used by a handler to report that one of the attributes or data in the

current operation is not valid for the specified class and namespace.

Reporting bad data is left to the discretion of the handler. Handlers can choose to not flag

BADDATA errors if they want to facilitate future extensions to a namespace.

Syntax:

"BADDATA" sp OID sp KEY sp VALUE nl

Return Values: 201.

The INFO Command
The INFO command is used by a handler to report some piece of info for use by the front-end.

The parameter MESSAGE is a single string formatted as listed below. This format allows easy

parsing by internationalization software at higher levels.

Syntax:

"INFO" sp MESSAGE nl

MESSAGE ::= domain ":" tag (<sp>+ var1name <sp>* "=" <sp>* var1val)*

Variable names must follow all the same guidelines as a property name, and variable values

must be alphanumeric or a properly quoted and escaped string.

Return Values: 201.

Appendix E: Cobalt System Configuration Protocol E—13

The WARN Command
The WARN command is used by a handler to report some piece of information for use by the

front-end. See the INFO command for information on MESSAGE parameter format.

Syntax:

"WARN" sp MESSAGE nl

Return Values: 201.

Built-in Properties of Objects
Using the GET command, a hash is returned from the Object Database (ODB). In addition to

ordinary properties, it also has these magic properties inserted in it:

 OID: The unique identifier number for the object.

 CLASS: The class of the object.

 NAMESPACE: The namespace of the subset of properties retrieved.

E—14 Appendix E: Cobalt System Configuration Protocol

Appendix F

CCE Class Definitions

Chapter Contents

Programming Conventions

CCE Classes

System

Network

Route

Workgroup

Workgroup Defaults

User

UserDefaults

MailList

User.Email

System.Email

System.FTP

System.Snmp

DhcpParam

DhcpStatic

DhcpDynamic

F—2 Appendix F: CCE Class Definitions

Programming Conventions
The class definitions use the following conventions:

• All class names have the first character capitalized. For example, System. If they have

more than one word, the first character of all words is capitalized. For example,

MailList.

• Namespace names follow the same rule as class names.

• All property names start with an all lowercase first word. If a property name has more

than one word, the first characters of the second word onwards are capitalized. For

example, gateway and stylePreference are valid property names.

CCE Class Definitions

System
System stores all system-wide configuration settings. There should be exactly one System

object in every functional system.

Table F–1 Network

Properties Definition

hostname The name of the host (first half of the Fully Qualified Domain Name).

domainname The domain name of the host (second half of the Fully Qualified Domain

Name).

gateway IP address of the default gateway.

DNS Colon (:) delimited list of DNS server IP addresses.

notify_email Address to whom to email emergency reports.

time_region Used by UI to select timezones.

time_country Used by UI to select timezones.

time_zone Time zone to use.

reboot Set to true to enable rebooting the machine and is cleared whenever CCE is

restarted.

halt Set to true to halt the machine. Cleared when restarted.

Appendix F: CCE Class Definitions F—3

Network
Network stores settings relevant to the basic (non-virtual) TCP/IP network interfaces.

Route
Route adds additional gateways for some routes.

Workgroup
Workgroup stores all workgroup-specific settings.

Table F–2 Network

Properties Definition

device Usually either eth0 or eth1.

ipaddr IP address for this interface.

netmask Netmask for this interface.

Media Address
Control

MAC address of this interface.

enabled True to bring the interface up; false to take it down.

bootproto Either DHCP, none, or LCD.

Table F–3 route

Properties Definition

target The destination subnet or host to perform routing.

netmask Netmask of target subnet.

gateway IP address of gateway for this subnet.

device Device (defaults to the device gateway is within).

Table F–4 workgroup

Properties Definition

enabled Determines if the workgroup enabled (boolean).

members Colon (:) delimited list of usernames who are members of this group.

F—4 Appendix F: CCE Class Definitions

Workgroup Defaults
Workgroup defaults stores workgroup defaults

User
User stores all user-specific settings.

name The unique name of this workgroup (alphanumeric).

quota Disk space quota for this workgroup (integer).

Table F–5 workgroup defaults

Properties Definition

quota Allowed disk space (in megabytes).

Table F–6 user

Properties Definition

enabled Used to enable or disable the users account.

fullName The full comment name of the user.

localePreference Used exclusively by the UI.

name The unique name of this user (alphanumeric).

password The user’s plaintext password.

sortName The string to use when sorting users.

shell Path to the user’s shell.

site The name of the site to which the user belongs.

siteAdministrator Is the user a site administrator?

stylePreference Used exclusively by the UI.

systemAdministrator Is the user a system administrator?

Table F–4 workgroup

Properties Definition

Appendix F: CCE Class Definitions F—5

UserDefaults
UserDefaults stores user defaults.

MailList
MailList represents a mailing list.

Table F–7 User Defaults

Properties Definition

quota Allowed disk space (megabytes)

userNameGenMode The mode for user name generation. Possible values are firstInitLast,

first, last.

Table F–8 MailList

Properties Definition

name Alphanumeric name of the mailing list.

password Password for authenticating mail-admin commands.

postPolicy Rules to restrict who can post to the list.

moderated Indicates that only moderators can post.

any Anybody can post.

members Only members can post.

subPolicy Rules to restrict who can subscribe to the list.

closed Only the administrator or moderators can subscribe users.

open Anybody can subscribe.

confirm Anybody can subscribe, confirmation required for subscriptions.

local_recips "," Delimited list of local usernames to receive mail.

remote_recips "," Delimited list of remote usernames.

moderator The list moderator.

group What group is this mailing list associated with (for quota purposes)?

site This field should always be empty for Sun Cobalt Qube 3 server

appliance.

enabled Is list active? (Boolean value; default is true.)

F—6 Appendix F: CCE Class Definitions

User.Email
User.Email determines email-specific properties.

System.Email
System.Email lists system-specific email properties.

Table F–9 User.Email

Properties Definition

enabled Determines if email is enabled.

aliases List of email aliases for this user.

forward Address to forward this user’s email.

vacation Is user on vacation? What’s the message?

url URL of UI for configuring email properties.

apop Whether APOP is active for this user.

Table F–10 System.Email

Properties Definition

acceptFor Array[Host|Domain] for which to accept mail.

denied Array[Host|Domain] for which to deny mail.

relayFor Array[Host|Domain] to relay for.

routes Hash[Domain:Domain] redirection.

masqDomain Domain to masaquerade as.

smartRelay Host to forward mail to.

deliveryMode Alter(’interactive’,’background’,’queue’). Controls how email is delivered.

privacy Boolean representing high email security (Expn/Vrfy).

maxMessagesSize Integer (in megabytes). Largest size email to accept and send. 0 to disable.

queueTime Alter (’daily’,’half-daily’... and others). Controls how often mail is queued

per cron intervals.

Appendix F: CCE Class Definitions F—7

System.FTP
System.FTP determines FTP settings.

System.Snmp
SNMP settings are settings for Simple Network Mail Protocol.

DhcpParam
DhcpParam are parameters for DHCP clients.

Table F–11 System.FTP

Properties Definition

enabled Determines whether FTP is enabled.

anon_en Determines whether anonymous FTP is enabled.

maxusers Number of simultaneous users who can be logged in.

quota Quota for anonymous files.

url URl of UI for configuring FTP properties.

Table F–12 SNMP

Properties Definition

enabled Determines whether SNMP server is enabled.

readCommunity Read-only SNMP community

readWriteCommunity The read and write SNMP community

Table F–13 DhcpParam

Properties Definition

enabled DHCPd on or off flag.

domainname The domain name of the host (second half of the Fully Qualified Domain

Name).

gateway IP address of the default gateway.

dns Colon (:) delimited list of DNS server IP addresses.

F—8 Appendix F: CCE Class Definitions

DhcpStatic
DhcpStatic configures static address assignments.

DhcpDynamic
DhcpDynamic provides configuration for dynamic address range assignments.

netmask Netmask for this network.

lease The maximum lease time in seconds.

Table F–14 DhcpStatic

Properties Definition

ipaddr IP address to assign to this MAC address.

mac Media Access Control (MAC) address to get the above IP Address.

Table F–15 DhcpDynamic

Properties Definition

ipaddrlo The beginning of the range.

ipaddrhi The end of the range.

Table F–13 DhcpParam

Properties Definition

Index-1

Index

Symbols
.pkg file format 6-1

A
AddButton A-3
addIconGray C-11
alphanum D-1
alphanum_plus D-2
appliance 1–2
application module

naming 6-3
ArrayPacker B-1
audience 1–3
AUTH command E-6
authentication 6-20
AUTHKEY command E-7

B
BackButton A-3
back-end modules 6-2
BADDATA command E-12
baddata() 5-37
Bar A-4
binary modules 6-2
BlueLinQ 6-11, 6-20
boolean D-2
borderColor C-13
borderThickness C-4, C-13, C-18
BUILD variables 6-5
Button A-5
BYE command E-11
bye() 5-32

C
C library 5-16
CancelButton A-8

CCE
extending 5-2
handler configuration file 5-13
library 5-16

CCE daemon (CCEd) 5-2, 5-4
command-line parameters

 5-5
CCE Flow 5-3
CCE Process Flow 5-4
CCE_CREATED 5-18
CCE_DEFER 5-18
CCE_DESTROYED 5-18
CCE_FAIL 5-18
CCE_MODIFIED 5-18
CCE_NONE 5-18
CCE_SUCCESS 5-18
cceClient 5-5

public methods 5-40
CLASSES command E-9
Classes() 5-33
cListNavigation C-17
Cobalt Configuration Engine (CCE) 2–7, 5-2, 5-3
Cobalt Configuration Engine daemon (CCEd) 1–6
Cobalt Object Database (CODB) 2–6, 5-2, 5-6
Cobalt System Configuration Protocol (CSCP) 2–7, 5-2,

5-5
collapsed Icon C-18
collapsibleList C-17
COMMIT command E-9
CompositeFormField A-9
configuration files 2–9
connectfd() 5-37
connectudsI() 5-33
CountryName A-11
CREATE command E-7
create() 5-33
creating a Perl object 5-31

Index-2

D
datatypes 5-17
DESTROY command E-8
destroy() 5-34
DetailButton A-11
DhcpDynamic settings F-8
DhcpParam settings F-7
DhcpStatic settings F-8
dividerHeight C-10
document roadmap 1–4
domain 4-3
DomainName A-12
domainname D-5
DomainNameList A-12
downIcon C-19
downIconGray C-19

E
email_address D-3
EmailAddress A-12
EmailAddressList A-13
ENDKEY command E-7
endkey() 5-34
enum

cce_handler_ret 5-18
cce_props_state_t 5-18

Error B-3
error checking A-1
event

* 5-14
CREATE 5-14
DESTROY 5-14
handlers 5-2, 6-8
propertyname 5-14
triggered 2–10

event_namespace() 5-39
event_object() 5-39
event_oid() 5-39
event_old() 5-40
event_property() 5-39
expandedIcon C-18

F
failureIcon C-14
FileUpload A-14
FIND command E-10
findNSorted() 5-35
findSorted() 5-35
fontFamily C-4
fontSize C-4
fontStyle C-4
fontWeight C-5
Form A-15
FormField A-18
FormFieldBuilder A-22
fqdn D-4
FTP 5-5
FullName A-27
Fully Qualified Domain Name F-2, F-7
function

cce_array_deserial() 5-30
cce_auth_cmnd() 5-19
cce_authkey_cmnd() 5-19
cce_bad_data_cmnd() 5-24
cce_bye_cmnd() 5-20
cce_bye_handler_cmnd() 5-25
cce_connect_cmnd() 5-20
cce_connect_handler_cmnd() 5-25
cce_create_cmnd() 5-20
cce_destroy_cmnd() 5-21
cce_endkey_cmnd() 5-21
cce_find_cmnd() 5-21
cce_find_sorted_cmnd() 5-22
cce_get_cmnd() 5-22
cce_handle_destroy() 5-26
cce_handle_new() 5-26
cce_last_errors_cmnd() 5-25
cce_list_destroy() 5-30
cce_names_class_cmnd() 5-23
cce_names_oid_cmnd() 5-23
cce_props_count() 5-26
cce_props_destroy() 5-27
cce_props_get() 5-27
cce_props_get_new() 5-27
cce_props_get_old() 5-28
cce_props_new() 5-28

Index-3

cce_props_nextkey() 5-28
cce_props_reinit() 5-28
cce_props_set() 5-29
cce_props_set_old() 5-29
cce_props_state() 5-29
cce_set_cmnd() 5-23
cce_whoami_cmnd() 5-24
cscp_oid_from_string() 5-30
cscp_oid_to_string() 5-31

G
GET command E-8
get() 5-36
gettext 4-2
GroupName A-27

H
handler

configuration file 5-13
events 5-14
registration files 5-15
stages 5-15

handlers 6-3, 6-4
hostname D-4
HTML A-2
HTML generation A-1
HtmlComponent A-27
HtmlComponentFactory A-1
HTTP 5-5
HTTP headers A-2

I
i18n 4-1

C language interface 4-7
interface 4-6
interpolation 4-5

icon C-10
ImageButton A-28
ImageLabel A-29
IMAP 6-2
info C-19
INFO command E-12
info() 5-38
infoHeight C-17
install package file 6-9

int D-2
Integer A-30
internationalization 4-2

modules 6-2
strings 6-15

interpolation 4-5
IntRange A-32
ipaddr D-3
IpAddressList A-33
ISO-639 4-4

J
JavaScript error checking A-1

L
l10n 4-1
Label A-33
libraries

wrapper 5-5
library

C 5-16
CCE 5-16

Locale A-35
locale 6-4

identifier 4-4
localization 4-2
logo C-21

M
MacAddress A-35
MailList settings F-5
MailListName A-36
Majordomo 6-2
make rules 6-6
makefile variables 6-4
menu

item 3–6
method

auth() 5-32
authkey() 5-32
baddata() 5-37
bye() 5-32
classes() 5-33
connectfd() 5-37
connectuds() 5-33

Index-4

create() 5-33
destroy() 5-34
endkey() 5-34
event_namespace() 5-39
event_object() 5-39
event_oid() 5-39
event_old() 5-40
event_property() 5-39
findNSorted() 5-35
findSorted() 5-35
get() 5-36
info() 5-38
oid() 5-38
set() 5-36
warn() 5-38
whoami() 5-37

ModifyButton A-36
modularity 2–10
module

directory layout 6-5
file hierarchy 6-23

MultiButton A-36
MultiChoice A-39, C-8
MultiFileUpload A-42

N
NAMES command E-9
namespace 4-3
naming your application module 6-3
NetAddress A-43
NetAddressList A-43
netmask D-4
network D-3

settings F-3
newIcon C-15
noneIcon C-15
normalIcon C-15

O
object

abstraction 2–8
extending 2–8
manipulation 5-6

Object ID (OID) 5-18
oid() 5-38

oldIcon C-15
Option A-43

P
package 5-3

authentication 6-20
dependency model 6-17
file format 6-1, 6-12
file structure 6-15
files 6-12
install 6-9
signature 6-20
skeleton module 6-4
stand-alone 6-17
user interface 6-4

package installation
update server 6-20

packing_list format 6-16
Page A-46, C-8
PagedBlock A-50, C-9
Password A-56, C-10
Perl

library 5-31
object 5-31

PHP 3–7, A-1, A-2
Pluggable Authentication Modules (PAM) 5-4
post-installation scripts 6-21
preinstallation script 6-20
problemIcon C-16
programmatic conventions 1–5
property

elements C-2
types C-2

R
Redhat Package Modules (RPMs) 6-20
related documents 1–4
RemoveButton A-57, C-10
removeIcon C-11, C-12
removeIconGray C-12
repliedIcon C-16
roadmap

document 1–4
route settings F-3
RPMs 6-20

Index-5

S
SaveButton A-58, C-11
scalar D-1
schema

definition 5-6, 5-9
script

preinstallation 6-20
ScrollList A-59, C-12
selectedIcon C-18
selectedImageLeft C-21
selectedImageRight C-21
SendMail 6-2
ServerScriptHelper B-5
service module 6-3
SET command E-8
set() 5-36
SetSelector A-69, C-11
settings

DhcpDynamic F-8
DhcpParam F-7
DhcpStatic F-8
MailList F-5
network F-3
route F-3
system F-2
System.Email F-6
System.FTP F-7
System.Snmp F-7
User.Emails F-6
UserDefaults F-5
user-specific F-4
workgroup F-3
workgroup defaults F-4

severeProblemIcon C-16
signature 6-20
SnmpCommunity A-72
software update installation 6-20
sortAscendingIcon C-13
sortDescendingIcon C-13
sortedAscendingIcon C-14
sortedDescendingIcon C-14
stand-alone package 6-17
StatusSignal A-72, C-14

struct
cce_error_t 5-17
cce_handle_t 5-17
cce_props_t 5-18

style
boolean C-2
color C-3
common properties C-3
definition files 3–10
elements C-1
files C-1
positive integer C-3
property types C-2
target attributes C-2
URL C-3

style properties
backgroundColor C-3
backgroundImage C-3
borderThickness C-4
color C-4
fontFamily C-4
fontSize C-4
fontStyle C-4
fontWeight C-5
textDecoration C-5
width C-5

styleResource C-1
Stylish A-74
Stylist A-74
successIcon C-16
system settings F-2
System.Email settings F-6
System.FTP settings F-7
System.Snmp settings F-7

T
tab C-20
tabHeight C-17
tag 4-3
target attributes C-2
templates 6-4
TextBlock A-77
textDecoration C-5
TextField A-79
TextList A-80

Index-6

the Qube 3 software architecture
development tools 6-22

TimeStamp A-80
TimeZone A-81
TYPEDEF 5-12
typedef

cscp_oid_t 5-18
typeIcon C-20
typographical conventions 1–5

U
UIFC

AddButton A-3
BackButton A-3
Bar A-4
Button A-5
CancelButton A-8
CompositeFormField A-9
CountryName A-11
DetailButton A-11
DomainName A-12
DomainNameList A-12
EmailAddress A-12
EmailAddressList A-13
FileUpload A-14
Form A-15
FormField A-18
FormFieldBuilder A-22
FullName A-27
GroupName A-27
HtmlComponent A-27
ImageButton A-28
ImageLabel A-29
Integer A-30
IntRange A-32
IpAddressList A-33
Label A-33
Locale A-35
MacAddress A-35
MailListName A-36
ModifyButton A-36
MultiButton A-36
MultiChoice A-39
MultiFileUpload A-42
NetAddress A-43

NetAddressList A-43
Option A-43
Page A-46
PagedBlock A-50
Password A-56
RemoveButton A-57
SaveButton A-58
ScrollList A-59
SetSetSelector A-69
SnmpCommunity A-72
StatusSignal A-72
Stylish A-74
Stylist A-74
TextBlock A-77
TextField A-79
TextList A-80
TimeStamp A-80
TimeZone A-81
UninstallButton A-82
Url A-82
UrlList A-84
UserName A-86
UserNameList A-86
VerticalCompositeFormField A-86

uint D-2
UninstallButton A-82
unselectedIcon C-19
unselectedImageLeft C-21
unselectedImageRight C-22
Updates menu 6-20
upIcon C-20
upIconGray C-20
Url A-82
UrlList A-84
user interface 6-4

library 3–1
style 3–10

user interface (UI) modules 6-2
User Interface Foundation Classes (UIFC) 3–7, A-1
User.Email settings F-6
UserDefaults settings F-5
UserName A-86
UserNameList A-86
user-specific settings F-4

Index-7

V
VerticalCompositeFormField A-86

W
WARN command E-13
warn() 5-38
WHOAMI command E-11
whoami() 5-37
word D-1
workgroup defaults settings F-4
workgroup settings F-3
wrapper libraries 5-5

X
XML 5-6, 6-8

attributes 5-7
comments 5-8
elements 5-7
escape sequences 5-8
files 6-7, C-1
symbols 5-7
syntax 5-6
tree node 6-8
whitespace 5-6

Index-8

	Contents
	Introducing The Sun CobaltTM Qube 3 Software Architecture
	Introduction
	Audience

	About this Book
	Related Documents
	Document Roadmap

	Conventions Used in this Guide
	Typographical Conventions
	Programmatic Conventions

	Terminology

	About The Qube 3 Software Architecture
	The Appliance Concept
	The User Interface Defines the Appliance
	Navigating Around
	Building Pages
	Ideas Behind UIFC
	User Interface with Style
	Built-in Internationalization
	Abstraction of the System into Objects
	Storing the Objects
	Manipulating the Objects
	Extending the Objects
	Watching for Changes
	Actuating the Changes
	Modularity – Doing Your Own Thing
	What CCE is Not

	User Interface
	How the Navigation System Works
	XML Elements
	Navigation Manager
	Adding a New Navigation Node
	Using Unique Names

	Building Pages
	A Further Example

	The User Interface Style
	How Styles Work
	Changing the User Interface Style
	Making Other Style Changes

	Using i18n and l10n in The Qube 3 Software Architecture
	i18N: A World Tour
	Terminology

	How Internationalization Works
	Using Domains, Tags, and Locales
	Domains
	Tags
	Locale
	How Strings Are Added to the System

	Using Interpolation
	Interpolation Rules

	The i18n Interface
	The i18n C Language Interface

	The i18n PHP Interface
	Object Methods

	Internationalization Example

	Introducing the Cobalt Configuration Engine
	The Cobalt Configuration Engine (CCE)
	Basic Concepts
	How Data Flows Through CCE

	The CCE Daemon (CCEd)
	CCEd Command-Line Parameters

	The Cobalt System Configuration Protocol (CSCP)
	The Cobalt Object Database (CODB)
	Schemas
	How to Read XML Syntax Descriptions
	Whitespace
	Symbols
	Elements and Content
	Attributes
	Comments
	Escape Sequences
	Sample XML

	Schema Syntax
	Syntax: SCHEMA
	Syntax: CLASS
	Syntax: PROPERTY
	Syntax: TYPEDEF

	Sample Schema Definition File

	Handler Registration
	Events
	Handlers
	Stages
	File Naming
	Sample Handler Registration File

	CCE Libraries
	C
	Dependencies and Headers
	Datatypes
	Functions

	Perl
	Module
	Creating a New Object
	Methods

	Public Methods for CCEClient (PHP)

	Making Qube 3 Software Architecture-Aware Applications
	Making Qube 3 Software Architecture-Aware Applications
	About the Application Module
	Naming Your Application Module
	Building a New Service Module

	Making your Application into a Package
	Introducing Slush Barn, a “Real-World” Application
	How to Install your Package File on the Qube 3
	Installation Process
	Choices for the Installation Process

	Package Structure
	Package Dependency Model
	Information for Installing Stand-Alone Packages
	Software Update Server
	Development Details

	User Interface Foundation Classes
	HTML Generation
	Error Checking
	Reusable Code
	Common Pitfalls
	AddButton
	Public Methods

	BackButton
	Public Methods

	Bar
	Public Methods

	Button
	Public Methods

	CancelButton
	Public Methods

	CompositeFormField
	Public Methods

	CountryName
	Public Methods

	DetailButton
	Public Methods

	DomainName
	DomainNameList
	EmailAddress
	EmailAddressList
	Public Methods

	FileUpLoad
	Public Methods

	Form
	Applicability
	Usage
	Public Methods

	FormField
	Public Methods

	FormFieldBuilder
	Applicability
	Public Methods

	FullName
	GroupName
	HTMLComponent
	ImageButton
	Public Methods

	ImageLabel
	Public Methods

	Integer
	Public Methods

	IntRange
	Public Methods

	IpAddressList
	Label
	Public Methods

	Locale
	Public Methods

	MacAddress
	MailListName
	ModifyButton
	Public Methods

	MultiButton
	Applicability
	Usage
	Public Methods

	MultiChoice
	Applicability
	Usage
	Public Methods

	MultiFileUpload
	Public Methods

	NetAddress
	NetAddressList
	Option
	Applicability
	Public Methods

	Page
	Applicability
	Usage
	Public Methods

	PagedBlock
	Applicability
	Usage
	Public Methods

	Password
	Public Methods

	RemoveButton
	Public Methods

	SaveButton
	Public Methods

	ScrollList
	Applicability
	Usage
	Public Methods

	SetSelector
	Public Methods

	SnmpCommunity
	Public Methods

	StatusSignal
	Public Methods

	Stylish
	Public Methods

	Stylist
	Public Methods

	TextBlock
	Public Methods

	TextField
	Public Methods

	TextList
	TimeStamp
	TimeZone
	Public Methods

	UninstallButton
	Public Methods

	Url
	Public Methods

	UrlList
	Public Methods

	UserName
	UserNameList
	VerticalCompositeFormField

	Utility Classes
	ArrayPacker
	Applicability
	Public Methods

	Error
	Public Methods
	Optional Methods

	ServerScriptHelper
	Applicability
	Usage
	Public Methods

	About Style
	Style Files
	Supported Styles
	Boolean
	Color
	Positive Integer
	URL

	Common Properties
	backgroundColor
	backgroundImage
	borderThickness
	color
	fontFamily
	fontSize
	fontStyle
	fontWeight
	textDecoration
	width

	Styles
	Bar
	emptyImage
	endImage
	filledImage
	startImage
	Button
	CancelButton
	Label
	ModifyButton
	MultiChoice
	Page

	PagedBlock
	dividerHeight
	icon
	Password
	RemoveButton
	removeIcon
	SaveButton

	SetSelector
	addIconGray
	removeIcon
	removeIconGray

	ScrollList
	borderThickness
	borderColor
	sortAscendingIcon
	sortDescendingIcon
	sortedAscendingIcon
	sortedDescendingIcon

	StatusSignal
	failureIcon
	newIcon
	noneIcon
	normalIcon
	oldIcon
	problemIcon
	repliedIcon
	severeProblemIcon
	successIcon

	cListNavigation
	infoHeight
	tabHeight

	collapsibleList
	borderThickness
	collapsed Icon
	expandedIcon
	selectedIcon
	unselectedIcon
	info
	downIcon
	downIconGray
	typeIcon
	upIcon
	upIconGray
	tab
	logo
	selectedImageLeft
	selectedImageRight
	unselectedImageLeft
	unselectedImageRight

	Base Data Types
	Scalar
	Word
	Alphanum
	Alphanum_plus
	Int
	Uint
	Boolean
	Ipaddr
	Network
	Email Address
	Netmask
	Fqdn
	Hostname
	Domainname

	Cobalt System Configuration Protocol
	Example Headers
	Messages
	CSCP Command Summary
	Common Syntax Definitions

	CSCP Commands
	The AUTH Command
	The AUTHKEY Command
	The ENDKEY Command
	The CREATE Command
	The DESTROY Command
	The SET Command
	The GET Command
	The COMMIT Command
	The NAMES Command
	The CLASSES Command
	The FIND Command
	The WHOAMI Command
	The BYE Command

	CSCP Handler Extensions
	The BADDATA Command
	The INFO Command
	The WARN Command

	Built-in Properties of Objects

	CCE Class Definitions
	Programming Conventions
	CCE Class Definitions
	System
	Network
	Route
	Workgroup
	Workgroup Defaults
	User
	UserDefaults
	MailList
	User.Email
	System.Email
	System.FTP
	System.Snmp
	DhcpParam
	DhcpStatic
	DhcpDynamic

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

