=ed) Sun Cobalt

The Qube 3 Software Architecture Developer’s
Guide

Version 1.0

Sun Microsystems, Inc., Sun Cobalt Server Appliances.

i Contents

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 U.S.A. All rights
reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in the product that is described
in this document. In particular, and without limitation, these intellectual property rights may include one or more of the
U.S. patents listed at http://www.sun.com/patents and one or more additional patents or pending patent applications in
the U.S. and other countries.

This document and the product to which it pertains are distributed under licenses restricting their use, copying,
distribution and decompilation. No part of the product or of this document may be reproduced in any form by any
means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun Logo, Java, Java Script, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, and the Sun
Cobalt Logo are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

UNIX is a registered trademark in the United States and other countries, exclusively licensed through X/Open
Company, Ltd.

For a complete listing of the software used within the Sun Cobalt Qube 3 server appliance, and the terms under which
it can be distributed, refer to the Sun Cobalt Web site at http://www.cobalt.com. The Sun Cobalt Qube 3 server
appliance includes software developed by the Apache Group for use in the Apache HTTP server project (http://
www.apache.org/). The Sun Cobalt Qube 3 server appliance also includes Majordomo, a package for managing
Internet mailing lists. The latest version of Majordomo can be obtained from ftp://ftp.greatcircle.com/pub/majordomo/.

Sendmail is a trademark of Sendmail, Inc.
Federal Acquisitions: Commercial Software — Government Users Subject to Standard License Terms and Conditions.

DOCUMENTATION IS PROVIDED “AS IS” AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS
AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303-4900 Etats-Unis. Tous
droits réservés.

Sun Microsystems, Inc. détient des droits de propriété intellectuelle sur la technologie réunie dans le produit qui est
décrit par ce document. Ces droits de propriété intellectuelle peuvent s'appliquer en particulier, sans toutefois s'y
limiter, & un ou plusieurs des brevet américains répertoriés a I'adresse http://www.sun.com/patents et a un ou
plusieurs brevets supplémentaires ou brevets en instance aux Etats-Unis et dans d’autres pays.

Contents iii

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent I'utilisation, la
copie, la distribution et la décompilation. Aucune partie de ce produit ou document ne peut étre reproduite sous
aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de
licence, s'ily en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractéres, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, JavaScript, Sun Cobalt, Sun Cobalt Qube, Sun Cobalt RaQ, et le logo Sun
Cobalt sont des marques de fabrique ou des marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans
d’autres pays.

UNIX est une marque déposée aux Etats-Unis et dans d'autres pays et licenciée exclusivement par X/Open Company,
Ltd.

Pour une liste comple’te du logiciel utilise' dans le mini-serveur Sun Cobalt Qube 3, et les conditions dans lesquelles il
peut e”tre distribue’, voir le site Web de Sun Cobalt a” http://www.cobalt.com. Le mini-serveur Sun Cobalt Qube 3
contient du logiciel de'veloppe' par le Groupe Apache pour le projet de serveur Apache HTTP (http://www.apache.org/
). Le mini-serveur Sun Cobalt Qube 3 contient e'galement le logiciel Majordomo pour la gestion de listes d'adresses
Internet. La dernie're version de Majordo peut e”tre obtenue de ftp:/ftp.greatcircle.com/pub/majordomo/.

SendMail est une marque déposée de SendMail, Inc.

LA DOCUMENTATION EST FOURNIE “EN LETAT” ET TOUTES AUTRES CONDITIONS, DECLARATIONS ET
GARANTIES EXPRESSES OU TACITES SONT FORMELLEMENT EXCLUES, DANS LA MESURE AUTORISEE PAR
LA LOI APPLICABLE, Y COMPRIS NOTAMMENT TOUTE GARANTIE IMPLICITE RELATIVE A LA QUALITE
MARCHANDE, A LAPTITUDE A UNE UTILISATION PARTICULIERE OU A LABSENCE DE CONTREFACON.

iv Contents
Acknowledgements Xiv
Chapter 1 Introducing The Sun CobaltTM Qube 3 Software Architecture
INtroduction 11
Audience 1-3
About this BooK. 1-3
Related Documents e 1-4
Document Roadmap.o i i 1-4
Conventions Used inthisGuide 1-5
Typographical Conventions. 1-5
Programmatic Conventionst 1-5
Terminology o 1-6
Chapter 2 About The Qube 3 Software Architecture
The Appliance Concept. e e 2-2
The User Interface Defines the Appliance. 2-3
Navigating Around. e e 2-3
Building Pages. 2-3
Ideas Behind UIFC. i 2-4
Userinterfacewith Style 2-5
Built-in Internationalization. 2-5
Abstraction of the SystemintoObjects 2-5
Storingthe Objects. 2-6
Manipulating the Objects. 2—7
Extendingthe Objects i 2-8
WatchingforChanges 2-9
Actuatingthe Changes. i, 2-10
Modularity — Doing YourOwn Thing. 2-10
What CCEISNOt.o e e 2-10
Chapter 3 User Interface
How the Navigation System Works. 3-2
XML Elements. 3-2
Navigation Manager. 3-4
Adding a New Navigation Node 3-6
UsingUniqgue Names i 3-7
Building Pages. 3-7

A Further Example. 3-8

Contents \Y
The User Interface Style 3-10
How StylesWork. 3-10
Changing the User Interface Style 3-10
Making Other Style Changes. 3-11
Chapter 4 Using i18n and 110n in The Qube 3 Software Architecture
ILBN: AWOIId TOUN .« .ot e e 4-1
Terminology. oo e 4-1
How Internationalization Works 4-2
Using Domains, Tags,and Locales. 4-3
DOMaINS . . . 4-3
TAGS - 4-3
Locale. 4-4
How Strings Are Added tothe System 4-4
Using Interpolation 4-5
Interpolation Rules. 4-5
Theil8niInterface 4-6
The i18n C Language Interface 4-7
Theil8n PHP Interface 4-10
Object Methods 4-11
Internationalization Example. i 4-15
Chapter 5 Introducing the Cobalt Configuration Engine
The Cobalt Configuration Engine (CCE) 5-2
BasiC CONCEPLS. . vttt 5-2
How Data Flows ThroughCCE. 5-3
The CCEDaemon (CCEd) ...t 5-4
CCEd Command-Line Parameters., 5-5
The Cobalt System Configuration Protocol (CSCP)................. 5-5
The Cobalt Object Database (CODB) 5-6
SCNEMAS . . . e 5-6
How to Read XML Syntax Descriptions. 5-6
Whitespace. e 5-6
SYmMbOIS . . e 5-7
Elementsand Content. i 5-7
Attributes 5-7
COMMENTS. . . e 5-8
Escape SeqUENCES. 5-8

Sample XML e 5-8

Vi

Contents
Schema SyntaX. 5-9
Syntax: SCHEMA 5-9
Syntax: CLASS 5-10
Syntax: PROPERTY 5-10
Syntax: TYPEDEF. 5-12
Sample Schema Definition File. 5-12
Handler Registration e 5-13
EVeNtS. . . 5-14
Handlers. 5-15
StAgES . . oo 5-15
File Namingo 5-15
Sample Handler Registration File 5-16
CCE LIbraries 5-16
o 5-16
Dependenciesand Headers. 5-17
Datatypes 5-17
FUNCLIONS . . . e 5-19
Perl . . 5-31
Module 5-31
Creatinga New Object. 5-31
Methods 5-32
Public Methods for CCEClient (PHP). 5-40
Chapter 6 Making Qube 3 Software Architecture-Aware Applications
Making Qube 3 Software Architecture-Aware Applications 6-1
About the Application Module 6-2
Naming Your Application Module 6-3
Building a New Service Module 6-3
Making your Application into a Package 6-4
Introducing Slush Barn, a “Real-World” Application. 6-7
How to Install your Package Fileonthe Qube 3. 6-9
Installation Process 6-11
Choices for the Installation Process. 6-12
Package Structure 6-12
Package Dependency Model 6-17
Information for Installing Stand-Alone Packages 6-17
Software Update Server. 6-20
Development Details

Contents Vii
Appendix A User Interface Foundation Classes
HTML Generationt e e A-1
Error Checking. A-1
Reusable Code e A-2
Common P Pitfalls e A-2
AdABULION A-3
BackButton A-3
Bar . .. e A-4
BUttON . .. A-5
CancelBUutton A-8
CompositeFormField. A-9
CountryName. A-11
DetailButton. A-11
DomainName. e A-12
DomainNameList. e A-12
EmailAddress. e A-12
EmailAddressList. e A-13
FileUpLoad e A-14
Form. . e e A-15
FormField e A-18
FormFieldBuilder e A-22
FullName e A-27
GroupName A-27
HTMLCOmpoNneNnt e A-27
ImageButton A-28
ImageLabel A-29
INtEger . . A-30
INtRANgE. . . . A-32
IPAddressList.o e A-33
Label ... A-33
LocCale ... A-35
MaCAdAreSS e A-35
MailListName e A-36
ModifyBUtton e A-36
MUIBULION e A-36
MUIICRhOICE o e A-39
MultiFileUpload A-42
NetAdAreSS. . . .o o A-43
NetAddressList i A-43

OPtION . . A-43

viii

Contents

Appendix B

Page A-46
PagedBIoCK A-50
Password e A-56
RemoveButton. e A-57
SaveBULtON. A-58
SCrollList A-59
SetSelector. e A-69
SNMPCOMMUNILY. . . .ot e e A-72
StatusSignalo A-72
Stylish .. A-74
Sty o o A-74
TextBIOCK A-77
TextRield e A-79
TeXtLiSt . . A-80
TIMEStaMP. . . . A-80
TIMEBZONE. . . ot e A-81
UninstallButton A-82
Ul . e A-82
UrList . . A-84
UserName e e A-86
UserNameList A-86
VerticalCompositeFormField A-86

Utility Classes

Appendix C

ArrayPacKer e B-1
ErTOr. . B-3
ServerScriptHelper. B-5

About Style

Style Files C-1
Supported Styles C-2
Boolean C-2
COlOr. C-3
Positive Integer C-3
URL .ot C-3
CommON Propertiest C-3
backgroundColor e C-3
backgroundimage. C-3
borderThickness. i C-4

Contents

fontFamily Cc4
fontSize e C-4
foNtStyle. Cc4
fontWeight C-5
textDecoration C-5
WIEN. . C-5
SIS o C-5
Bar . . C-5
emptylmage C-6
endimage C-6
filledimage. C-6
startimage. C-6
BUttON. . . . C-6
CancelBUtton C-7
Label. ... Cc-7
ModifyBuUtton. C-7
MUItIChOICE e C-8
Page C-8
PagedBIoCK C-9
dividerHeight. o C-10
o o C-10
Password e C-10
RemoveButton. C-10
FEMOVEICON. e e C-11
SaveButton. C-11
SetSEleCtOr. . . o C-11
addicoNGray.o C-11
FEMOVEICON. e e C-12
removelCoNGray.o C-12
SCrollList C-12
borderThickness. C-13
borderColor C-13
sortAscendinglCcon C-13
sortDescendinglcon C-13
sortedAscendinglcon C-14

sortedDescendinglCcon C-14

Contents

StatusSignal C-14
failurelcon C-14
NEWICON . . . C-15
NONEICON. . . . o C-15
NOrMallCoN. e C-15
OldICON . .. C-15
problemlcon. C-16
repliedlcon C-16
severeProblemlcon. C-16
SUCCESSICON. . . .o C-16

CListNavigation e C-17
infoHeight C-17
tabHeight C-17

collapsibleList C-17
borderThickness. C-18
collapsed Icon C-18
expandedICon. C-18
selectedICono C-18
unselectedICon C-19
INfO . . C-19
dOWNICON . . .o C-19
dOWNICONGIAYttt C-19
YPEICON . . . C-20
UPICON. . C-20
UPICONGIAY. . . . et C-20
tab. . C-20
(000, . o C-21
selectedlmageleft C-21
selectedimageRight Cc-21
unselectedimageleft C-21
unselectedimageRight C-22

Appendix D Base Data Types
SCalar . .. D-1
WOrd. . D-1
Alphanum. D-1
Alphanum_plus D-2
It D-2
UINt. D-2

Contents Xi
paddr. D-3
NetWOrK . . . e D-3
Email Address D-3
Netmask D-4
FOdn . . D-4
Hostname e D-4
Domainname D-5

Appendix E Cobalt System Configuration Protocol

Example Headers. E-2

MESSAgES . . . o E-3

CSCP Command SUMMATYo vttt e e E-5
Common Syntax Definitions E-6

CSCP Commandsci ittt e e e e E-6
The AUTHCommand e E-6
The AUTHKEY Command ity E-7
The ENDKEY Command 0. E-7
The CREATECommand. i E-7
The DESTROY Command ity E-8
The SETCommand ot E-8
The GET Command. E-8
The COMMIT Commandii .. E-9
The NAMES Command. E-9
The CLASSES Commandt E-9
The FINDCommand.0 i, E-10
The WHOAMICommand.t E-11
The BYECommand. E-11

CSCP Handler EXtensions.t e e E-12
The BADDATACOoMMANd. ottt e e E-12
TheINFOCommand. E-12
The WARN Command. E-13

Built-in Properties of Objects L. E-13

Appendix F CCE Class Definitions

Programming Conventionsttt F-2

CCEClass Definitions.o v i i F-2
Sy M L . F-2
NEtWOIK . .o e F-3
ROUtE . . e F-3

WOTKGIOUP . . . oot e F-3

Xii

Contents

Workgroup Defaults. F-4

USBr . o F-4
UserDefaults. F-5
MailListo F-5

User.Email F-6
System.Email F-6
System.FTP .. F-7
SYSEM. SNMP . . o F-7
DhepParam. F-7
DRCPStatiC oo F-8

DhepDyNamiCot F-8

Contents Xiii

Acknowledgements

I would like to acknowledge the following people who have been essential to writing this
book: Tim Hockin, Jonathan Mayer, Adrian Sun, Mike Waychison, Will DeHaan, and
Kevin Chiu. Thanks also to Karina Eichmann, Gordon Garb, and Denise Stone.

NOTE: The Security and Active Monitor chapters will be fully covered in the
next version of this book. This is the 1.0 version of this book and it matches the
.76 version of the CCE software release.

Xiv Contents

Chapter 1

Introducing The Sun Cobalt~ Qube 3 Software
Architecture

Introduction

Chapter Contents

Introduction
Audience
About this Book
Related Documents
Document Roadmap
Conventions Used in this Guide
Typographical Conventions
Programmatic Conventions
Terminology

Sun Cobalt™ completed its first Web server appliance software architecture in 1998 and
began delivery of Sun Cobalt Qube™ appliances and Sun Cobalt RaQ™ servers that same
year. The Web appliance market has taken off. Today, Sun Cobalt RaQ servers host hundreds
of thousands of Web sites in data centers around the world. Sun Cobalt Qube 3 appliances
provide basic Web services for thousands more small businesses and educational institutions.

Software developers and service providers now view the Web as the medium for delivering
services. They increasingly see Web server appliances as the vehicle for cost effectively and
easily delivering these services to the edge of their customers’ networks.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

As appliances, these products are fundamentally more cost effective and easier to use than
‘pre-Internet’ general-purpose servers. Just as most consumers receive television
entertainment through set-top box appliances on the edge of cable networks, millions of
businesses, previously excluded from the information technology market place, will receive
services through Web-enabled appliances attached to the Internet.

Sun Cobalt recognized from the start that the user interface and underlying software
architecture for these Web appliances must be designed specifically for this task. Sun Cobalt
has worked with leading network providers, including several of the world’s leading ISPs and
network service providers, to appliantize their Web services. Their requirements are at the
center of Sun Cobalt’s second-generation software architecture, which is described in this
developer’s guide.

The Sun Cobalt Qube 3 software architecture (Qube 3 software architecture) is specifically
designed for delivery of services through the Web model. This model allows services, hosted
on the appliance, to deliver content to many users simultaneously through a graphical user
interface.

The Qube 3 software architecture, code named Sausalito, is designed to provide a superb
developer platform, with the following goals in mind.

* Provide an extensible architecture enabling third-party developers to customize,
modularize, and implement services quickly. Qube 3 Software Architecture interfaces
are documented in this guide, including tools for tuning the user interface and
interfacing with the built-in configuration database. The user interface also includes
such features as a software update indicator and single-button install and delete
capabilities.

* Provide an easy to understand environment for non-technical users. The Qube 3
software architecture masks the complexity of its underlying software and is intended
to provide the framework for maintenance-free services.

¢ Use open standards for quick development time and strong security. The Qube 3
software architecture is designed to run on top of Linux and, in addition to its own
interfaces, uses a number of standard services and interfaces like Apache and LDAP.

* Provide flexibility to localize user interfaces into multiple languages quickly. The
Qube 3 software architecture includes a language library for all localized data.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—3

Audience

The audience for this document includes developers who create hardware or software
applications that run on the Qube 3 Software Architecture, Value Added Resellers (VARs),
and others who want to customize the Qube 3 Software Architecture-based systems to fit their
requirements.

About this Book

This book contains the following sections:

Chapter 2, “About The Qube 3 Software Architecture,” provides a high-level tutorial of the
components that make up the Qube 3 Software Architecture.

Chapter 3, “User Interface,” explains how the user interface works with code samples and
examples of how to change the style.

Chapter 4, “Using i118n and 110n in The Qube 3 Software Architecture” describes how to
internationalize and localize the Qube 3 Software Architecture.

Chapter 5, “Introducing the Cobalt Configuration Engine” describes the interaction between
the underlying software for the Qube 3 Software Architecture.

Chapter 6, “Making Qube 3 Software Architecture-Aware Applications,” describes the file
structure you must use to create an application that runs on the Sun Cobalt Qube 3 server
appliance.

Appendix A, “User Interface Foundation Classes” lists the methods in the User Interface
Foundation Classes (UIFC).

Appendix B, “Utility Classes” lists the methods for the utility classes.
Appendix C, “About Style,” lists the default styles used in Qube 3 Software Architecture.

Appendix D, “Base Data Types” lists the base data types used in Qube 3 Software
Architecture. You should be aware of these data types so that your software does not
overwrite them.

Appendix E, “Cobalt System Configuration Protocol” describes the CSCP protocol.

Appendix F, “CCE Class Definitions” lists the properties of CCE classes.

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Related Documents

Information about the Sun Cobalt Qube 3 Server Appliance Manual is available at

htt p: // www. cobal t . con? support/resources/ manual s. ht ni . Information about
Qube 3 Software Architecture is also available at ht t p: / / www. cobal t . con? pr oduct s/
i ndex. htm .

Document Roadmap

This roadmap tells you where to find information for specific tasks.

Table 1-1 Documentation Roadmap

Task Where to find information

Adding a new menu item “Adding a New Navigation Node” on page 3—6

Changing the logo “Making Other Style Changes” on page 3—11

Changing the background color “Changing the User Interface Style” on page 3—10

Internationalizing your application “Using 118n and 110n in The Qube 3 Software
Architecture” on page 4-1

Adding a new service “Building a New Service Module” on page 63

Working with the UIFC classes Appendix A

Working with the Utility classes Appendix B

What are the base classes for Qube 3 Software Appendix C

Architecture

Working with the Object Database (ODB) Appendix D

CSCP Libraries Appendix E

What are the CCE class definitions Appendix F

Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture 1—5

Conventions Used in this Guide

Typographical Conventions

Bol d is used for emphasis, for example:
Each UIFC page should have one and only one Page object.

Bold is also used for words found in the user interface, for example:
test.xm is shown adjacent to Style.

Italic font is used for variables, for example:
require ::= string

Italic font is also used for new terms when they are first used, for example,
these widgets are manipulated from a PHP script by the developer.

Couri er is used for program names and code, and Web resources, for example:
CCE Aut h command returns NULL for failure or a session key for success.

char *cce_auth_cmd

http://ww:. cobal t.com support/resources/ manual s. ht m

Programmatic Conventions

The class definitions use the following conventions:

* All class names have the first character capitalized. For example, Syst em If they have
more than one word, the first character of all words is capitalized. For example,
Mai | Li st .

* Nanespace names follow the same rule as class names.

* All property names start with an all lowercase first word. If a property name has more
than one word, the first characters of the second word onwards are capitalized. For
example, gat eway and st yl ePr ef er ence are valid property names.

1—6 Chapter 1: Introducing The Sun CobaltTM Qube 3 Software Architecture

Terminology

Qube 3 Software Architecture has its own unique terminology:

Cobalt Configuration Engine (CCE): A general name for the entire configuration
architecture.

Cobalt System Configuration Protocol (CSCP): The protocol that connects the CCE client
to the session manager and the Cobalt Object database. CSCP connections provide object-
database functionality and execute handlers as necessary.

Event: A change in a property of an object within the database.
Client: A program using CSCP to request or change information.
Handler: A program called by CCE to affect an event.

Cobalt Configuration Engine daemon (CCEd): The server process that handles incoming
connections and signals.

Chapter 2

About The Qube 3 Software Architecture

Chapter Contents

The Appliance Concept
The User Interface Defines the Appliance
Navigating Around
Building Pages
Abstraction of the System into Objects
Storing the Objects
Manipulating the Objects
Extending the Objects
Watching for Changes
Actuating the Changes
Modularity — Doing Your Own Thing
What CCE is Not

This chapter provides a tutorial-style overview of the Qube 3 software architecture. It
describes the basic concepts, the issues addressed in creating this appliance architecture, and
the solutions implemented to address them.

2—2 Chapter 2: About The Qube 3 Software Architecture

The Appliance Concept

When designing software for a general purpose server, the designers must put as few
restrictions on flexibility as possible. However, an appliance does not have this restriction. A
Sun Cobaltppliance is designed with a single goal in mind: providing a full range of services
through a single user interface, while keeping the ease of use of household appliances. This
goal enables us to narrow the scope of the software and consequentially tightly integrate the
software into the system.

The Qube 3 software architecture is an answer to the appliance concept. The Qube 3 software
architecture allows Sun Cobalto provide a single back-end mechanism for monitoring and
manipulating the system software. Through this mechanism, a very simple user interface can
operate, while keeping the details of the back-end system logically separate.

This separation of interface and implementation is a cornerstone of reusable and reliable
software design. This allows developers to have a stable exported interface that can be used in
their applications for complete integration into the Sun Cobaltnvironment. This is one of the
major goals of the Qube 3 software architecture.

Figure 2—1 provides a basic view of the Qube 3 software architecture. The interface provides
the glue between the user interface and back end.

Figure 2-1 Overview of the Qube 3 software architecture

LUser
Interface

API

Back End

Chapter 2: About The Qube 3 Software Architecture 2—3

The User Interface Defines the Appliance

Appliances make complex systems very easy to use. The user interface plays a strong role in
defining the appliance. The Qube 3 software architecture provides the foundation to build
Web-based user interfaces on the user interface layer. This layer communicates with users and
routes information to and from the back-end. There are several components in this layer: the
navigation manager, User Interface Foundation Classes (UIFC), and St yl i st .

The Qube 3 software architecture was designed to meet internationalization requirements.
The Qube 3 software architecture supports users at different locales by working with
European and Asian languages. The user interface layer uses an internationalization library to
handle this requirement. For example, when the user interface needs to display “Welcome” to
users who speak German, it asks the internationalization library to get the translated string
“Willkommen” to display to users.

Navigating Around

The navigation manager component is designed to provide basic navigation capabilities to
user interfaces. The idea is to separate data that defines the site map and the navigation
managers that walk through the map. On a site map, each node denotes a page on the user
interface and each page can have multiple widgets. Information about the nodes are stored in
special files.

Given a site map, it is up to navigation managers to determine how to walk through them.
Different navigation managers can walk through the same site map differently. Some
navigation managers provide a step-by-step walk through while others show the whole map as
a tree structure so that users can pick the right node instantly.

Building Pages

The Qube 3 software architecture provides many utility libraries and UIFC as a widget set on
which you can build user interface pages. One of the goals of UIFC is to provide consistency
among different pages on a user interface. This is extremely important for the interface’s ease
of use. For example, UIFC fields that represent boolean selections always look the same.
Otherwise, boolean selections can be represented as a checkbox, two radio buttons, or a
change-state-button.

2—4

Chapter 2: About The Qube 3 Software Architecture

UIFC is object-oriented. Each widget has corresponding classes. Also, UIFC is currently
implemented in PHP. Developers must have a basic understanding of object-oriented
programming and PHP before examining UIFC. PHP is a very easy-to-learn and versatile
scripting language designed to build Web pages.

Ht m Conponent Fact ory is a UIFC class that constructs widgets and talks to the
internationalization library. The basic task of this class is to instantiate UIFC widget classes in
common ways and give them parameters of the desired locale. This is the first class to
understand within UIFC.

Server Scri pt Hel per is a utility class that simplifies page building. Its main job is to
communicate with CCE for authentication and to get user preferences. It also provides
methods to make page building easy.

Ideas Behind UIFC

UIFC is a layer above user interface implementation mechanisms, such as HTML. When we
think in HTML, we think at the level of checkbox, radio button, select field, and text field.
When we think in UIFC, we think at the level of boolean selection, option selection, set
selection, and typed inputs. HTML is for implementation; UIFC is for design concept. UIFC
frees UI designers from very low-level implementation details.

UIFC is designed to provide consistency for user interface. Take a simple example: one Ul
designer can use a checkbox to represent an on/off selection on one page, while another
designer can use two radio buttons, one for on and one for off, to represent the same concept.
Such discrepancies make a user interface hard to learn and use. UIFC provides a single widget
for boolean selection, so such concepts are always represented consistently.

UIFC improves portability. Especially for Web-based user interfaces, portability across

multiple browser platforms has always been a trouble spot. Because UIFC users express
things as concepts, UIFC can choose the appropriate implementation through platform-
specific tuning or lowest common denominator approaches.

Sometimes, UIFC can be restrictive. For example, what if UIFC expresses boolean as a
checkbox while a UI designer uses radio buttons for the same concept? To provide this bit of
flexibility, pages using UIFC can be mixed with HTML and JavaScript; however, UIFC users
should be cautious when mixing UIFC and other tools.

Chapter 2: About The Qube 3 Software Architecture 2—5

User Interface with Style

There are lots of style properties on a user interface. A Web user interface includes fonts, font
size, color, images, alignment, and other properties. UIFC support style properties, which are
stored in special files. UIFC widgets parses through these files to get the right style to display.
The Qube 3 software architecture allows multiple styles to coexist on the system and allows
users to choose ones they prefer. Styles are pretty much like “skins” in some applications.

Built-in Internationalization

Internationalization is built into The Qube 3 software architecture and supported through an
internationalization library. The Qube 3 software architecture users often refer strings by their
references rather than the actual strings. This way, the actual string can be fetched from the
string catalog based on the locale preference of the user who reads the string. The Qube 3
software architecture users can also set locale-specific properties. For example, when an input
field should only be displayed for Japanese but not for other languages, we can introduce an

i nput Fi el d property and set it to true only for Japanese. Of course, the code that manages
this field must be made aware of this property.

The Qube 3 software architecture is designed such that an object’s representation resides only
on the user interface layer. Developers should not be surprised that anything below the user
interface layer only passes references instead of the actual strings or other locale-sensitive
resources. When the user interface gets the reference and decides to use it, the
internationalization library is then called to resolve it.

Abstraction of the System into Objects

The first step towards separating the interface from the implementation is to separate the data
from the process. System data, such as configuration options and users, can become abstract

groupings of data or objects. These objects are self-contained, dictating only the information
necessary to recreate themselves. An application can define a class or data structure to enable
the system to know about and manipulate its data.

Chapter 2: About The Qube 3 Software Architecture

This provides developers a flexible way to define new configuration items to the system, as
well as a convenient and single mechanism by which to read all system configuration data.
Figure 2-2 shows the addition of classes and objects.

Figure 2-2 Adding Classes and Objects to The Qube 3 software architecture

User
Interface

Back End

Storing the Objects

Once we have well-defined objects that can accurately represent the system, we need to define
how and where to store them and how to retrieve and modify them. Unlike reading
configuration files, such as / et ¢/ passwd or ht t pd. conf , to determine the state of the
system, a good abstraction should provide a single, flexible way to access all system
configuration data.

The Cobalt Object Database (CODB) is provided as a place to store objects. It is not a
database in the sense of commercial relational databases designed to run a corporate
enterprise, but instead stores the known state of the system. CODB acts as a buffer between a
user interface and the system itself.

Chapter 2: About The Qube 3 Software Architecture 2—7

Objects can be stored, retrieved, modified, and destroyed, all without the user interface having
to know about the details of any given application configuration mechanism. Figure 2—-3 adds
the Cobalt Object Database (CODB).

Figure 2-3 Adding CODB

User
Interface

API

Manipulating the Objects

Now that we have objects that can be stored, created, and destroyed, we need to define a
mechanism by which to do these things. In order to provide a manageable and accountable
access method, Sun Cobalhas defined the Cobalt System Configuration Protocol (CSCP),
which connects clients to the Cobalt Configuration Engine (CCE). CCE is the process that
implements CODB.

Chapter 2: About The Qube 3 Software Architecture

CSCP provides primitives to read, write, create, destroy, and search for objects. To make
accessing CSCP easier, Sun Cobalprovides libraries in several common programming
languages, such as C, Perl, and PHP.

Figure 2—4 Connecting the UI to CCE and CODB

User
Interface

mi}

Extending the Objects

Now that application packages can export their configuration data via CODB classes, other
software packages can take advantage of this. Many times, an application package adds some
functionality to an existing object that did not exist in the base object. Consider an application
that provides some per-user configuration options. With CODB classes, it is easy to define a
class for this data. Now the UI can create an object of this class (an instance) whenever a user
is created and destroy the instance whenever a user is destroyed.

There is one more problem, however. A good abstraction of the object knows nothing of the
user interface and a good user interface engine knows nothing of what classes are available.
How do we associate this new per-user class with a user object?

Chapter 2: About The Qube 3 Software Architecture 2—9

CODB provides the ability to extend a class with a namespace. A namespace is a set of
properties, like a class, that piggy-backs onto other classes. We can change our per-user class
into a user namespace. Now, whenever a user gets created or destroyed, the namespace goes
with it. We also solve the issue of association. We know our new namespace is associated with
user objects by its namespace association.

Watching for Changes

At this point, we have the Cobalt Configuration Engine (CCE) running a database (CODB)
that stores instances of classes and namespaces. This configuration engine understands the
CSCP protocol to affect changes on the CODB. How do the changes made to the CODB
become changes made to the system?

Application packages can register via configuration files to be notified when certain events
occur. The registration mechanism provides the ability for any software package to register
event handlers (or just handlers) on any class or namespace known to the system. Events
understood by the CODB are create events, destroy events, and modify events.

Now that we can register handlers, our software package can create a handler for any event for
which it is concerned. For example, if we need to add a user to our application’s access list,
we might register on the user-create event. When a user is created, our handler is invoked, and
we can do our specific task.

2—10 Chapter 2: About The Qube 3 Software Architecture

Actuating the Changes

When an event is triggered, CCE steps through the list of handlers for that event, and runs
each of them, in turn, until one fails, or there are no more handlers to run.

It is the responsibility of each handler to make the appropriate changes to the system
configuration to actuate the event.

Figure 2-5 Making changes to the system

Config
Files

CSCP

DB} — | Configuration

Modularity — Doing Your Own Thing

At every stage of the Qube 3 software architecture, concern has been given to retain
modularity. It is the goal of the architecture to make adding and removing software packages
have no impact on the rest of the system. This principle should be adhered to as much as
possible.

What CCE is Not

CCE is not a generic data-store. It is not a place for applications to store their data. It is meant
to be a buffer between making abstract changes in the configuration of the system and those
changes happening on the system.

CCE is not a place to store user-interface definitions. CCE should know as little as possible
about any particular user interface implementation.

Chapter 2: About The Qube 3 Software Architecture 2—11

CCE is not a mechanism for a user interface to trigger system events. The user interface
should not rely on any knowledge of the handlers that are registered on an event.

CCE is not a replacement for other security mechanisms. While the Qube 3 software
architecture tries to be secure and cautious in all cases, it should not forego other security
methods.

CCE is not a replacement for a good backups. Much of the system’s data is stored in files on
the system, not in CODB. Protect your data and back up regularly.

2—12 Chapter 2: About The Qube 3 Software Architecture

Chapter 3

User Interface

Chapter Contents
How the Navigation System Works

Adding a New Navigation Node
Building Pages
The User Interface Style
How Styles Work
Changing the User Interface Style

The Qube 3 software architecture is Sun Cobals first fully open programming interface. It is
designed to enable third-party developers to create applications that are seamlessly integrated
into the look and feel of the Qube 3 software architecture-based appliances. One of the layers
within the Qube 3 software architecture is the user interface, which enables you to:

* Manipulate navigation with navigation managers and site maps.
* Manipulate look-and-feel style.

* Build user interfaces pages that are consistent with the Qube 3 software architecture-
based systems.

3—2 Chapter 3: User Interface

How the Navigation System Works

The navigation system is a sub-system within the user interface that manages navigation
through site maps. The system consists of site maps and navigation managers.

The navigation system on the Qube 3 software architecture is a dynamic system. It is
generated from a set of files that define navigation nodes. By linking these nodes together, a
site map is formed. Users can construct site maps by adding and removing nodes. These site
maps a