
     

July 2001
DTN-14, Revision 0-1

 

Developer Technical Note

                                      
Creating Package Files for the Sun CobaltTM Qube 3

1 Overview

New software, updates, and third-party software for Sun CobaltTM servers is delivered in the form of 
downloadable software *.pkg files, referred to as package files. Package files are available from Cobalt’s web 
and FTP sites, and from third-party vendors. Cobalt uses package files to distribute and install software 
because it fits the Sun Cobalt philosophy of ease of use: users can install software using only a web browser, 
which is easier and more intuitive than telnet or other Unix command line interfaces.

This note describes the typical contents of a package file, and how to create one for the Sun Cobalt Qube 3 

appliance (Qube 3). For more complete information on all aspects of developing applications for the Qube 3, 
go to ftp://ftp.cobalt.com/pub/developer/TechNotes/devguide.pdf.

Table of Contents

Overview 1
Audience 1

What is a Package File 1
BlueLinQ 1

About the Application Module 2
Naming Your Application Module 2
Building a New Service Module 3
Making your Application into a Package 3
How to Install your Package File on the Qube 3 6
Installation Process 6

Choices for the Installation Process 7

Package Structure 7
Package Dependency Model 11

Information for Installing Stand-alone Packages 11
Software Update Server 13

Development Details 14

1.1 Audience

The audience for this technical note are developers of software for the Qube 3. For more information, see 
http://developer.cobalt.com

2 What is a Package File

A package file is a single downloadable compressed collection of files used for software installation or 
updates for the Qube 3.

To create an application, you must create a module that includes all the components needed and structure it so 
that it can be easily installed by users, in a package file format (.pkg). This technical note lists the fields that 
you need to include so that the Qube 3 can display the appropriate information during the installation process. 
It also describes the appropriate directories, files, and resources for your application module.

2.1 Using BlueLinQTM Technology

BlueLinQ“ is the software notification system for the Sun Cobalt Qube 3 and RaQ XTR products. BlueLinQ 
is a Sun Cobalt innovation that gives you instant access to product updates and new services as they become 
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 1 of 16



     

July 2001
DTN-14, Revision 0-1

 

Developer Technical Note

                     
available. Using BlueLinQ technology, your Qube 3 informs you when new software is available. With a click 
of a button, you can download the new software package and automatically install it. 

3 About the Application Module

The application module is a self-contained bundle of files, directories, and resources required for a new 
capability. Depending on the type of module you are creating, you choose the appropriate level of integration. 
Some modules trigger both the user interface and the back end system; others are stand alone modules. 

New modules can contain any or all of the following code:

1) User Interface (UI) modules

• UI pages built using UIFC

• Navigation nodes, such as adding buttons and menu items

The Web mail service that is displayed on the Cobalt menu is an example of a service that is integrated only 
with the user interface and uses IMAP as its back-end system. The files for the user interface go into the ui 
directory; for more information about module directory layout, see <f_Link> on page –4.

1) Internationalization modules

• Internationalization resources to translate the user interface into other languages.

2) Back-end modules

• CCE configuration files

• CCE handlers

Adding a user to the Qube 3 is an example of an instance that impacts only the back-end modules, where the 
existing user interface is used and the CCE configuration files and handlers are invoked.

3) Binary modules

• Service binary and configuration files, for example, email modules have SendMail and Majordomo 
binaries and modify the configuration files for these binaries.

• Databases that register users as they are created and notify event handlers about creating users. This type 
of module uses the existing user interface.

These modules can be manually installed and completely unintegrated to the Cobalt User Interface (UI).

4 Naming Your Application Module

Developers must use unique vendor-specific names for modules to avoid name conflicts. 

Note
Cobalt uses base in its module names, for example, 
base-devel.mod. Developers must differentiate their modules by naming the modules 
with a distinctive name, preferably a name that reflects their company or product, for 
example, vendor_name_module.
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 2 of 16



     

July 2001
DTN-14, Revision 0-1

 

Developer Technical Note

                                                    
5 Building a New Service Module 

A service module is a self-contained bundle of files or directories and resources required for a new capability, 
for example, an ecommerce product or a system backup product. New modules can contain any or all of the 
following:

• Navigation nodes — service.xml

• User Interface (UI) pages built using UIFC — service.php

• Internationalization resources — service.po

• CCE configuration files — service.schema, service.conf

• CCE handlers — serviceMod.pl, serviceMod.c 

• Service binaries and configuration — serviced

Note
You can write handlers in any language. Cobalt provides bindings for C and Perl. 

Cobalt enabling tools include:

• Standard directory structure document; see Figure 6, “Module File Hierarchy,” on page 15.

• Build tools to create loadable module files (scripts and a Makefile)

6 Making your Application into a Package

This section describes the skeleton module for the Qube 3. By customizing the skeleton module for your 
needs, you can integrate seamlessly into the Cobalt configuration environment. 

To build a service module:

1) Create handlers to interact with the Cobalt Configuration Engine (CCE). A configuration file goes in 
glue/conf; the actual handlers go in glue/handlers.

2) Create any user interface components, if necessary. These include web and menu page descriptors, 
which go in the ui/web and ui/menu directories, respectively. 

3) Write any locale files; these go in the locale directory. 

4) Look at templates/spec.tmpl and templates/packing_list.tmpl. 

Note
The default template to build RPM files is in 
/usr/sausalito/devel/templates. If you want to modify these templates, create a 
template directory in your module. Copy these files to your template directory and modify 
them as needed. 

5) Look at the top-level Makefile. Adjust the variables to fit your situation.

The default build targets are make all, make clean, make install, and make rpm.
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 3 of 16



     

July 2001
DTN-14, Revision 0-1

 

Developer Technical Note

                              
Note
A sample skeleton module is available in the Cobalt Developer web page. Go to 
http://developer.cobalt.com/resources/qube.samplecode for the code 
sample and Readme file.

Here’s some more information about the default make rules and expected file names: 

The BUILD variables determine which directories to include when calling the clean, install, and rpm 
targets.

The default make rules take the BUILD? variables and build up ui, glue, and locale RPMS, if requested. If 
any of these RPMS are generated, a capstone RPM is created as well. A capstone is a type of packing list for 
the RPMs.  

Table 1: The top-level Makefile variables

Makefile Variables Description

VENDOR the vendor field for your module

VENDORNAME the actual vendor name; this name can be the same as VENDOR

SERVICE the name for the service

VERSION version number

RELEASE release number

BUILDARCH set to noarch if you don’t want platform-specific RPMs generated.

XLOCALEPAT set to a space-separated list of locale patterns to exclude

BUILDUI packages all files in ui/web and ui/menu.

BUILDLOCALE set to yes to build these components, create RPMs, and create a 

capstone RPM.

BUILDSRC build the files is in the src directory.

BUILDGLUE If BUILDGLUE is set to yes, packages all the handlers, object schemas, 

configuration files for event triggers, and conf files. If set to no, 

BUILDGLUE does no packaging.

DEFLOCALE This locale is used for static HTML pages, for example, en or ja. 

Table 2: Module Directory Layout

Directories Description

constructor capstone constructors

destructor capstone destructors

glue handler and configuration modification code

ui user interface and user interface menu code

locale locale information and locale-specific UI pages
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 4 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
The default make rules expect the following file layout:

        1) glue/conf/*

glue/handlers/*

        2) locale/localeX/$(SERVICE).po

        3) ui/menu/*

ui/web/*

        4) constructor/*

destructor/*

The default make rules place these files in the following locations:

glue/conf/* -> $(CCEDIR)/conf/$(VENDOR)/$(SERVICE)/*
glue/handlers/* -> $(CCEDIR)/handlers/$(VENDOR)/$(SERVICE)/*

locale/localeX/$(SERVICE).po -> 
/usr/share/locale/localeX/LC_MESSAGES/$(VENDOR)-$(SERVICE).mo

ui/menu/* -> $(CCEDIR)/ui/menu/$(VENDOR)/$(SERVICE)/*
ui/web/* -> $(CCEDIR)/ui/web/$(VENDOR)/$(SERVICE)/*

constructors/* $(CCEDIR)/constructor/$(VENDOR)/$(SERVICE)/

*destructors/* $(CCEDIR)/destructor/$(VENDOR)/$(SERVICE)/*

If your module does not contain compiled code, the above make rules should be all that you need for building 
a service module. Otherwise, you need to know about a couple additional make rules. First, make checks for 
Makefiles in the glue, src, and ui directories and uses them, if they are present. You must prepend the 
PREFIX environment variable on the install phase of the Makefile so that RPMs are properly generated.

In addition, the make rpm rule does not touch the src directory, so you must create any RPMs you want from 
separate specification files. templates/packing_list.tmpl should be updated to reflect any of these 
RPMs without version numbers. You should create a file with the same name as the RPM in the rpms 
directory to get the appropriate version included in the packing list.

Finally, you might need to edit templates/rpmdefs.tmpl to add additional build, install, and file targets 
for any files that you have. The <begin [$%]VARIABLE> sections in the rpmdefs.tmpl file correspond to 
the same [VARIABLE_SECTION] sections in templates/spec.tmpl. If you want to add something to 
spec.tmpl that is not dependent upon a single RPM, you can directly add it to spec.tmpl. 

templates user-modifiable template files used in packing list and RPM 

generation

src src directory (optional)

RPMS RPMS directory (optional)

SRPMS source RPMS directory (optional)

Table 2: Module Directory Layout

Directories Description
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 5 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
Note
If you have a VENDORNAME specified, make searches first in {glue, locale, ui, 
src}/$(VENDORNAME) for files before searching in the glue, locale, ui, and src 
directories.

7 How to Install your Package File on the Qube 3 

There are two ways that packages can be installed on Qube:

• manually

• update server 

Both these ways provide information about the package, that is, package meta-information, before the user 
installs the package. This meta-information includes fields with the package name, vendor, description, 
license, and whether package dependencies exists; these fields are described in Table 3. This information is 
needed to properly display in the Qube UI details about the package before its installed. To provide this 
information, this information is included in the package list and the package information directories for each 
package. 

Update servers alert you if they have new software for your Qube 3. When the Qube is alerted that there is a 
new version of software for the Qube, the update server and Qube have the following dialog:

1) The Qube 3 queries the server for information about new software. It provides details about the Qube 
including the packages installs, Qube identification, and so forth. 

2) The update server replies with list of available packages with associated information, such as license and 
locale information. This informations corresponds to the packing_list and the contents of the 
pkginfo directory. 

3) If an InfoURL field is specified, a popup window with the URL is displayed when you go to the install 
detail page. If an InfoURL field is not specified, a short description of the package is displayed.

4) Installation can be selected.

The events around the manual installation are as follows:

1) The user on the Qube enters the package location through either browser upload, URL download, or 
putting the file in /home/packages.

2) The Qube prepares the package for installation and displays the installation page. This informations 
corresponds to the packing_list and the contents of the pkginfo directory. 

3) The contents of the installation page display a short description of the package that is to be installed. 

4) Installation can be selected.

8 Installation Process

The following stages occur in the installation process:

• If the package requires the server to reboot, the user is prompted to reboot the machine.
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 6 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
• The install process looks first for a splash page If the splash page specifies the pre-installation 
option, it will look for an index.cgi or index.php page to call. It will pass in the following two 
variables a GET request to these files: submiturl and cancelurl. 

Note
The splash page optionally specifies a pre-installation page, which allows developer to 
create a custom page for the package including license information. This page must be a CGI 
or PHP page that accepts GET requests. 

• If the splash page doesn’t exist and the license field does, BlueLinQ will present a standard license page 
containing the value of the license field. 

Note
The Qube 3 software notification mechanism is called BlueLinQ.

• Once the user accepts the license (if there is a license), BlueLinQ checks package dependencies, and halts 
if there is a dependency error. If not, BlueLinQ runs the pre-installation scripts, install RPMS, and then 
runs the post-installation script. The scripts are located in the scripts directory of the package.

Note
BlueLinQ will install an RPM only if it is newer than any existing RPMs. If there is an 
existing RPM on the server, BlueLinQ increments the reference count each time you add a 
package with a RPM referenced in it. When you uninstall a package, the reference count is 
reduced. If the reference count for a package is less than one, BlueLinQ deletes the RPM. 

8.1 Choices for the Installation Process

You can customize your installation. You can change the look and feel of install by opting to include:

• an infoURL field

• a splash page

• a generic license

The splash page must be a CGI or PHP file. The update process calls this CGI with the following URL 
variables set: submitURL and cancelURL. 

9 Package Structure

The package file format is a tar.gz file. When you install a package file, BlueLinQ checks for the following 
items:

• whether the file is a tar file or a compressed tar file

• whether the file is signed

In packages for earlier Cobalt products, package files had the following elements:

• packing_list
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 7 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
• RPMs

• SRPMs

• install_me script

Packages for earlier Cobalt products had scripts that performed all installation tasks. Package dependency 
checking was done by the package itself. New packages have scripts that runs at specified times.The scripts 
deal with the following issues:

• pre-installation

• post-installation

• pre-uninstallation

• post-uninstallation

BlueLinQ runs these scripts as part of the installation. Package dependencies are based on vendor name, 
version number and package name. You can evaluate version number to determine if they are equal, less than, 
or greater than the target version. The Qube 3 architecture currently checks a three-part field, for example, 1.0 
or 1.1.2.

The new packing list format includes the following elements as shown in Table 3, “Package List Format,” on 
page 8.

Note
All the information in the package list format is case-sensitive.

Table 3: Package List Format

Component Description

[Package -- Version=1.0]

Vendor vendor name can include alphabetical characters, numbers, 

underscore (_), and the plus sign (+). Spaces and hyphens (-) are 

not permitted. 

VendorTag internationalizable vendor string

Name packagename can include alphabetical characters, numbers, 

underscore (_), and the plus sign (+). Spaces and hyphens (-) are 

not permitted. 

NameTag: internationalizable package name string. 

Category category information can include alphabetical characters, 

numbers, underscore (_), and the plus sign (+). Spaces and 

hyphens (-) are not permitted. 

Location URL that specifies the package download location

InfoURL additional information URL. Optional. Use this if you want to 

display a new site (as opposed to installing a package).

InfoURL options options that should be sent with to the URL, which can include 

serial number, product identifier (product), and vendor name 

(name).
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 8 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
Version version of the package

Version Tag Internationalizable version number.

Size size in bytes (only used by the update server.)

Product: 

NOTE: use this field to specify as 

many products as you are 

including. Include one line for 

each package. You can use a 

regular expression to specify 

products, for example: 

(4000|4010|4100) WG.

 Cobalt product requirements: for example, 4100WG or 4nnnWG.

NOTE: 4000WG is the product number for the basic Qube 3.

4010WG is the product number for the Qube 3 with caching; 

4100WG is the product number for the Qube 3 with caching and 

mirroring.

PackageType specify complete or update

Options uninstallable, reboot, refreshui, refreshcce

LongDesc internationalizable long description

ShortDesc internationalizable short description

Copyright: internationalizable copyright string

License internationalizable license information. Optional

Splash pre-install, post-install, pre-uninstall, post-uninstall

Depend

NOTE: Each dependency must be 

on its own line. See See Package 

Dependency Model  on page 11. 

for more information.

package dependencies. for example, vendor:package. The 

package won’t show up in the new or updates pages if these 

dependencies aren’t met. Here’s what’s expected:

vendor:package vendor-package must exist.

vendor:package ! vendor-package must not exist.

vendor:package <=> version vendor-package is less 

than, equal to, or greater than the specified version number.

vendor:package != version vendor-package not equal 

to version.

VisibleDepend
NOTE: Each dependency must be 

on its own line. See Package 

Dependency Model  on page 11 

for more information.

just like Depend except that the package will show up in the new 

or updates lists even if dependencies aren’t met.

Obsoletes

NOTE: Each obsoletes must be on 

its own line. See See Package 

Dependency Model  on page 11. 

for more information.

obsoletes vendor-packages

format:

vendor:package

vendor:package <=> version

RPM used only by the actual package

SRPM used only by the actual package

Table 3: Package List Format

Component Description
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 9 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
Note
Internationalized strings are in the following format: [[vendor]]. If you are specifying 
strings within the pkginfo locale directory, then do not specify a domain. The Qube 3 
architecture specifies the domain for you. pkginfo locale strings cannot include locale tags 
within locale tags. You can include locale tags that refer to other domains. 

Package files have the following structures. Figure 1 shows the package file structure. 

Figure 1 Package File Structure

See Figure 6, Module File Hierarchy,  on page 15 for a more complete file hierarchy.

Note
The packing_list format for packages is very similar to the package part of the 
package_list update server packing list. You can use them interchangeably with the caveat 
that some fields are unused. For example, the update server information uses the size field. 
The packing list uses RPM, SRPM, and fileName.

The following features are only used by software update notification mechanism (BlueLinQ):

• Size (in bytes) 

• InfoURL

• Location 

• PackageType

packing_list

pkginfo

scripts

RPMS

SRPMS

pre-uninstall 

post-uninstall

pre-install

post-install
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 10 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
The following fields are only used by actual package installation mechanism:

¥ RPM

¥ SRPM

¥ Options 

9.1 Package Dependency Model

The dependency model allows you to restrict packages to particular Cobalt products, for example, the Qube 3. 
You can also include dependencies on other software packages. Finally, you can declare old packages 
obsolete.

The format for dependency requires that each dependency is on a separate line with a label denoting the type 
of dependency. The Qube 3 architecture offers three types of dependency information:

• Product: Cobalt Product Dependency such that the package will install if other software products that 
are needed are not already installed. These are checked by product ID, for example 4000WG. You can use 
a specific product, particular version, or you can use a Perl regular expression here. 

• Package dependencies:

¥ Depend: Normal package dependency based on the version number 
being less than (<), equal to (=), or greater than (>) the 
version number specified. 

¥ VisibleDepend: Visible dependency: same as Depend but is only 
useful for the software update mechanism. The packages that do 
not meet dependencies behave identically to the Depend in all 
other manners to new or update packages despite the fact that 
the package can t be installed. 

• Obsoletes: Obsoletes packages name or name and optional version, less than (<), equal to (=), or 
greater than (>) the version number specified, which removes information about other packages of that 
name or version number specified. 

10 Information for Installing Stand-alone Packages 

The following are used in the actual package installation process but not in update server-supplied 
information. They are not used for the update server pkginfo. 

• RPM

• SRPM

• Options (in a comma-separated list) include:

¥ reboot

¥ refreshui

¥ refreshcce

¥ uninstallable

• These fields are used to provide information and are included in the actual package as well as provided by 
the update servers:
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 11 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
• Package identification

¥ Name and nametag

¥ Version and versionTag

¥ Vendor and vendorTag

• Description

¥ shortDesc

¥ longDesc

• License information

¥ License

¥ Splash

• Category

These fields are found only in update server package: 

• Size (in bytes)

• PackageType: complete or update

• Location

• InfoURL: a pop-up window appears when the user clicks the magnifying glass

Figure 2 New Software Installed
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 12 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
• If you click on the magnifying glass, you see the information shown in Figure 3, which corresponds to the 
information in Table 3, “Package List Format,” on page 8. 

Figure 3 New Software Installation Details

10.1 Software Update Server

Note
If the infoURL file exists, it displays a popup window and will not install the actual package. 

The BlueLinQ tab on the Qube 3 has an Updates menu. This page lists available software with the following 
information.

• Update server-provided information (name, vendor, locale, description)

• Pop-up information. InfoURL displays the URL to be passed the Qube’s serial number

• The package checks for an InfoURL. If one exists, the page referenced by the InfoURL appears. If not, 
the package presents the license information, and installs after the user accepts the license agreement. 

When users click on Install Details, the Qube 3:

• Displays the splash page if there is one or displays a license agreement in standardized license format.

• Begins installation

When the user begins installation, these events occur on the Qube 3:

• It checks for a signature and attempts to authenticate it, if one is present. If the signature cannot be 
authenticated, a message is displayed letting the user know that the signature check failed. 

• It runs the preinstallation script.

• It installs the Redhat Package Modules (RPMs.

Note
Cobalt Networks uses Redhat Package Manager (RPM) files because applications are easy to 
manage if they are installed using RPM utilities. For details on creating *.rpm files (also 
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 13 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
known as “redhat package module” files), see Maximum RPM, by Marc Ewing and Erik 
Troan. Maximum RPM is the definitive technical reference for the RPM packaging system; it 
provides information on RPM's history, usage, and internals from both the user and packager 
perspectives. Also, see http://www.redhat.com/ for the most up-to-date information about 
RPM technology.

• It runs the postinstallation scripts.

• It reboots or refreshes, if those options are set.

Figure 4 shows the Update Server page.

Figure 4 Update Software Installed

If you click on the magnifying glass, you see the information shown in Figure 5, shown in 

Figure 3, which corresponds to the information in Table 3, Package List Format,  on page 8.

Figure 5 Update Software Installation Details

11 Development Details

Modules expect the following auxiliary support from the Qube 3 development tools:

• SAUSALITO/devel/module.mk for all the Makefile rules.
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 14 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
• SAUSALITO/bin/mod_rpmize for the RPM specification file generator. 

Figure 6 presents the module file hierarchy. 

Figure 6 Module File Hierarchy

Makefile

Constructor

serviceConstructor.pl

Destructor

serviceDestructor.pl

glue

service.conf
am

conf
service.conf

handlers

addservice.pl

delservice.pl

modservice.pl

schemas
sevice.schema

locale

en

service.po

src

Makefile

ServiceHelper

Makefile
serviceHelper.c

serviceHelper.h

serviceHelper.sh
Continued on next page.
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 15 of 16



July 2001
DTN-14, Revision 0-1

Developer Technical Note
    

templates

packing.list.tmpl

rpmdefs.tmpl

spec.tmpl

ui

menu

web

serviceRoot.xml

serviceAdmin.xml

serviceUser.xml

serviceSettings.php

serviceSettingsHandlers.php
Sun CobaltTM, Sun Microsystems, Inc., Server Appliance Business Unit 16 of 16


	1 Overview
	1.1 Audience

	2 What is a Package File
	2.1 Using BlueLinQTM Technology

	3 About the Application Module
	4 Naming Your Application Module
	5 Building a New Service Module
	6 Making your Application into a Package
	7 How to Install your Package File on the Qube 3
	8 Installation Process
	8.1 Choices for the Installation Process

	9 Package Structure
	9.1 Package Dependency Model

	10 Information for Installing Stand-alone Packages
	10.1 Software Update Server

	11 Development Details

