Module 17

Introduction tothe Sausalito Architecture

Objectives

After completing this module, you should be able to:

1

1

1

Explain the Sausalito software architecture design goals
Create and extend object schemas

Use the Sausalito cceclient utility to activate systems changes from
the command line

Analyze Cobalt Configuration Engine (CCE) server log files
Explain the contents of the /usr/sausalito directory tree

Extend the Server Desktop with menu items, options, and pages
Create languages for the Server Desktop using the I18n component

Create and implement a new Server Desktop style

17-1

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Additional Resources

Additional Resources

Additional resources — The following reference provides additional
% ;()) details on the topics discussed in this module:

I The Sun Cobalt™ Qube 3 Developer’s Guide, which is available at
http://developer.cobalt.com/sausalito/index.php

i For more information on PHP the widely-used, general-purpose
scripting language that is especially suited for Web development and
can be embedded into HTML see: [http://www.php.net/PHP]

1 For more information on gettext' utilities which are a set of tools that
provides a framework to help produce multi-lingual messages
[http://www.gnu.org/software/gettext/gettext .html]

17-2 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, inc. All Rights Reserved. Enterprise Services, Revision B

What Is Important in This Module?

What Is Important in This Module?

This module describes the Sausalito architecture and how to use it to
extend the server appliance’s out-of-the-box service features. The major
topics in this module are:

1 Sausalito Architecture Overview

I Sausalito Software Architecture

! SET Transaction Overview and Components

i SET Transaction Configuration

! Registering an Event Handler

I CSCP Communication

1 GET Transactions

1 Server Desktop Screen Generation

1 Navigation Sub-system Overview

1 Internationalization (i18n)

1 User Interface Foundation Classes (UIFC)
As you read this module, look for answers to the following questions. See
Appendix A for answers.

1. What is the Sausalito software architecture designed to provide?

Answer:

2. What are the Sausalito processes?

Answer:

3. What are the main components of CCE?

Answer:

Introduction to the Sausalito Architecture 17-3
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

What Is Important in This Module?

17-4

4. What are SET transactions and how are they triggered?

Answer:

5. What is the purpose of the Cobalt System Configuration Protocol?

Answer:

6. How is an Event Handler registered?

Answer:

7. What are GET transactions?

Answer:

8. What is the purpose of the Navigation sub-system?

Answer:

9. What is the function of Internationalization (i18n)?

Answer:

Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Overview

Overview

Sausalito is the name of the Sun Cobalt Qube 3 Plus server appliance’s
software architecture, which is designed to provide an extensible
development platform that enables third parties to customize and
modularize the platform and quickly implement services, applications,
and languages.

Having a clear understanding of Sausalito is helpful for maintaining the
server appliance. This module describes the Sausalito architecture and the
process for extending the server appliance’s out-of-the-box service
features.

Figure 17-1 shows that the Sausalito software layer lies between the
Server Desktop, applications, and the Linux operating system.

ausalit ftware architecture:

® Service configuration

(UIFC)

Features: Components; ’J N\
e Extendible Server ® Cobalt Configuration Engine \
Desklop @ Coball object-oriented database N
o Seamless integration of ® Event handlers N
third-party applicalions ® 118n N\
® Internationalization ® XML menu and style files | \
L)

User interface foundation classes

Server Desktop (GUI)

Figure 17-1

Sausalito on the server appliance platform layers

Sausalito Handles System Changes

Sausalito handles operating system modifications, such as creating,
deleting, and modifying users and groups. Sausalito also handles requests
for changing system functionality, such as enabling SMTP, CGI scripts,
and Microsoft FrontPage server extensions. Having Sausalito handle these
requests helps hide the complexities of the operating system from the end

user.

Introduction to the Sausalito Architecture

17-5

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Overview

Sausalito’s fully open Application Programming Interface (API) allows
programmers to seamlessly integrate additional applications, giving them
the look and feel of the server appliance.

Object-Oriented Programming

Sausalito is based on object-oriented programming; everything in the
system is an object that can be added, removed, changed, and extended.
Object-oriented programming helps Sausalito live up to its goal of
extensibility.

Figure 17-2 shows a block diagram of the Sausalito software architecture.
This diagram expands later in this module to show more details about
Sausalito’s components and process flow.

Cobalt
Object
Database

System and

Configuration
Files

(codb)

Client Requests

Server Appliance,

Cobalt Configuration Engine
Web Serve'r, and cscp Daemon (cced)
PHP Scripts

i18n || UIFC l
Menu Style XML
XML Files Files

Figure 17-2 Sausalito software architecture block diagram

17-6 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Sausalito’s Two Main Processes

Sausalito’s Two Main Processes

Sausalito can be broken down into two main processes: SET transactions
and GET requests. These two processes let you manipulate the system
software through the Server Desktop, while keeping the system software
and Server Desktop logically separate. Figure 17-3 shows the major
Sausalito components and the process flow for the two main processes.

Client Set Transactions Client Get Requests
(System Changes) . (Server Desktop Rendering)

Client Workstation
System and ‘
z Configuration Files

- Event ‘Server Appliance
Handlers |~ bt
3 Cobalt « and Web Server
Object

Database

_Event

[Menu XML
Files |

(codb)

Style XML |

' | i Files
Cobalt Configuration CcSCP | PHP Soripts T S
Engine Daemon (cced) | e { [—T
- - 5 ‘ (internationali-.
zation)

Figure 17-3 Sausalito components and process flow

Cobalt Configuration Engine

The main component of Sausalito is the Cobalt Configuration Engine
(CCE), which is responsible for both SET transactions and GET requests.
CCE is designed to act as a buffer between the system and the Server
Desktop to keep the two logically separate.

Introduction to the Sausalito Architecture 17-7
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Sausalito’s Two Main Processes

CCE has several components:
I The Cobalt Object-oriented Database (codb)
] The Cobalt System Configuration Protocol (CSCP)

I Event handlers

CCE maintains the configuration state of Sausalito by:
! Initiating event handlers to change the state of the system
1 Changing codb information

1 Delivering information from codb to the Server Desktop

17-8 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Overview

SET Transaction Overview

The

This section provides an overview of the SET transaction process and
components and their functions within Sausalito.

SET transactions are system changes performed by event handlers
registered to objects or object properties being created, deleted, or
modified. SET transactions are triggered by user input, such as:

! Adding a new object such as a user or group, or

i Modifying an existing object’s properties, such as enabling or
disabling a service or modifying user information

Then the event handlers registered to the object or the object properties
are executed.

CCE Daemon

The CCE daemon (cced) listens on the cced. socket, which is a standard
UNIX socket, and handles incoming connections and signals from the
CSCP. The CCE daemon is the administrator of Sausalito: It initiates event
handlers based on change requests and commits changes to codb, when
applicable. When you check the system processes on the server appliance,
you should see the cced process running. Figure 17-4 shows the cced
responsibilities:

Cobalt Configuration Engine Daemon (cced)

* Tracks all object classes, namespaces, and properties

« Tracks existing objects and their property values

* Coordinates event handler registrations to objects and
object properties

« Notify registered event handlers for system change
requests

e Communicates directly with and commits changes to
Cobalt Object-oriented Database (codb)

NN

i |
| Systemand |
\\Conﬁguration Files!

codb

Figure 17-4 The cced responsibilities

Introduction to the Sausalito Architecture 17-9
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Overview

Cobalt Object-Oriented Database

In object-oriented programming, everything is an object. Objects have
properties that contain values. For example, users and groups have names
and disk quotas have sizes. In codb, the System object has properties for
the server appliance’s services. For example, the FIP service has a
maximum-number-of-connections property, a maximum-number-of-
megabytes-per-transfer property, and other properties.

Figure 17-5 shows a codb object expanded. Objects in codb are identified
by numbers. Each object has a CLASS property that designates the type of
the object (user, group, system, or network route, among others) and
several other properties that contain configurable information. codb
objects can be extended with additional properties.

’Property Group Membershlp N

Value: home, sales, marketmg/ e (] PFOPeﬂY Server Desktop SME N
- “Property: Disk quota N Value: trueBlue .“’//
Ve Propeny Password N Value: 25 Mb / ST

. Value: §@%"8HQ_2 B — -

2 N ramorty: Pt /‘propeny Language Preference\
~~ 7 Property: Full name ™| Value: English (en) Vs

Propeny Email aliases \ Value: John Smlth \
\Value webmaster, ceo, gooc /\ \ . / i o
m—— N] /Property Username ™ \

5 e Value: Jsmt(h 7

—
.

Property: New Feature ™ \ Easily
\,___.Value: New feature Va’”f,,..«" : e Extendable

7
{
\

System and Service

Cobalt Object-oriented Configuration Files

Database
]
sl Sinln

Figure 17-5 The codb with an expanded object

codb is a holding tank for objects and their property values. The
information stored in codb is what is retrieved by CCE and viewed
through the Server Desktop. For example, a user is an object and that user

17-10 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved, Enterprise Services, Revision B

SET Transaction Overview

object has property values that include user name, full name, maximum
disk space, email aliases, and other properties. These object property
values display in the Server Desktop when you view a specific user’s
details.

Cobalt System Configuration Protocol

CSCP is a simple protocol used for communicating between clients and
CCE, and between CCE and the event handlers. CSCP is the only
mechanism by which CCE knows what actions to take. CSCP
communicates requests from the client to CCE, and it communicates
requests from CCE to the event handlers when system and service
configuration files need to be added, removed, or modified. After the
event handlers complete their work, either successfully or unsuccessfully,
CSCP reports back to CCE with the status. Figure 17-6 shows the function
of CSCP in Sausalito for handling the communication between requesting
clients and CCE and between CCE and the event handlers.

Cobalt System Configuration Protocol (CSCP)

Responsilbile for communication between:
e clients and CCE, and
e CCE and event handlers

o | Event

CSCP |» - cce - Jef CscP P4 L =vent B

| Handlers

System and
Configuration Files

Figure 17-6 CSCP functions in Sausalito

Event Handlers

Event handlers are executable scripts that are triggered by CSCP. They
have specific functions for changing system state, and registering services
and applications. Services and applications register themselves in CCE by
requesting notifications when specific codb objects and object property
values are added, removed, or modified.

Introduction to the Sausalito Architecture : 17-11
Copyright 2002 Sun Micrasystems, inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Overview

When these notifications take place, the event handlers make the changes
to the system and report back, using CSCP, to CCE with the success or
failure status.

Event handlers make it possible for software developers to apply changes
to the system without affecting existing functionality, as long as
guidelines are followed for adhering to the modularity of Sausalito.
Figure 17-7 shows how the event handlers in Sausalito handle changes to
the system and configuration files.

Event Handlers
Responsible for making changes to the
system and configuration files

Event\

Event 4
\Handler l
| System and

codb

| Configuration Files

Figure17-7 Event Handler functions in Sausalito

Table 17-1 on page 17-13 shows an overview of the process flow for SET
transactions:

17-12 Sun Cobalt Qube™ 3 Plus Server Appliance
Caopyright 20602 Sun Micrasystems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Overview

Table 17-1 SET transaction process

A client makes a request to the Web server to create,
destroy, or modify some aspect of the system, for example,
adding a user or changing a service.

1; The Web server then sends the request to PHP scripts.

Server Appliance
and Web Server

The PHP scripts communicate the request to the CCE
daemon.

52 The CCE daemon triggers event handlers that have
| Coball Confiauration | registered themselves to the object or object properties being
Engine Dae%gn (c'ced) created, destroyed, or modified.

The event handlers attempt, one at a time, to make changes
to the system and configuration files, and then they report

Fvent
Event back to the CCE daemon with a successful or unsuccessful
Hs{:gg‘rs }, message. If an event handler is successful, the CCE daemon

triggers the next event handler and the process repeats until
| there are no more event handlers. If an event handler is
1 unsuccessful, the process is stopped and no changes are
committed to the system.

System and

If all the event handlers are successful, then the CCE
daemon communicates directly with codband commits the
Conart changes.

Object
Database
(codb)

Introduction to the Sausalito Architecture 17-13
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Configuration

SET Transaction Configuration

Before SET transactions can take place in Sausalito, the system must be

configured to recognize requested changes and system changes that must
be made. This means:

| Objects and object properties need to be defined

! Event handlers need to be created and registered to the objects and
object properties

Objects and object properties need to be defined for program packages,
such as Apache, Proftpd, Active Monitor, Sendmail, and others. Then the
objects and object properties need to be registered with the event
handlers.

Note — When an object is added, deleted, or modified, the event handlers
registered to that object or that object’s properties are notified to make the
necessary system changes.

I\
N

Defining Objects and Object Properties

The structure of objects within codb is defined by . schema definition files.
These definition files provide schema, class, property, and typedef
information.

At system startup, the definition files are read; they define what objects
can be created, the properties the objects can have, and the data type the
object properties can contain. The schema definition files are located in
the /usr/sausalito/schemas/base/service-type directories.

When cced is started, all files with a .schema file extension under the
/usr/sausalito/schemas directory tree are used to build the object
schemas.

The /usr/sausalito/schemas/base/service-name directories are
strictly for organization. If you have installed third-party applications,
you might also find /usr/sausalito/schema/vendor-name directories
that contain schema definition files.

17-14 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Configuration

Table 17-2 contains the schema file elements and attributes discussed in
this course. For a complete listing and description of the schema file
elements and attributes, see the Sun Cobalt Qube™ 3 Developer’s Guide,
which is referenced in “Additional Resources” on page 17-2.

Table 17-2 Schema definition file elements and attributes

Element | Attributes | Description
class name Name of the class being defined or extended
version Version number for the class structure
namespace | Optional name of the class structure
property | name Name of the property
type Data type of the property
default Default value for the property
optional | Defines whether the property can be an empty string(””) or a
valid fact used to make a decision
array Defines whether the property is an array of the specified type,
can be any string, or is unspecified
typedef | name Symbolic name for type
type Validation class for typedef
data Data validator: re = regular expression and extern = path to
external program
errmsg Error message returned by CCE

Introduction to the Sausalito Architecture

17-15

Copyright 2002 Sun Microsystems, Inc. Alt Rights Reserved. Enterprise Services, Revision B

SET Transaction Configuration

W wWw-~Jo0 Uk WN

I
SR =)

17-16

Schema File Example

The following is an example of a fairly simple definition file that extends
the System object with an FTP name space that has two properties:
enabled and maxconnections. This file is written in XML. The first seven
lines are comments that are opened by <! -- and closed by -->.

$Id: ftp.schema,v 1.5 2000/09/19 23:48:28 thockin Exp $
Copyright (c) Cobalt Networks, Inc.
Author: asun@cobalt .com

This provides the schema for ftp.

<class name="System" namespace="Ftp" version="1.0">
<property name="enabled" type="boolean" default="true"/>
<property name='"maxConnections" type="int" default="25"/>
</class>

In line 9, class name="System" extends the System object with a new
name space.

In line 10 and 11, the properties are defined for the System.Ftp object
and name space. The enabled property has its type set to boolean and
its default value set to true.

The maxConnections property has its type set to integer (type="int")
and its default value set to 25.

Type Definitions

Type definitions define what type of data is allowed for a certain
property. For example, scalar data is used for full user names; it allows
first and last names to be any combination of letters, numbers, and white
space.

If you have installed third-party software applications, you might find
more type definitions defined in the /usr/sausalito/schemas directory.
Table 17-3 on page 17-17 lists the server appliance type definitions
(typedef), defined in the /usr/sausalito/schemas/basetypes. schema
file.

Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsysiems, Inc. All Rights Reserved. Enterprise Services, Revision B

SET Transaction Configuration

Table 17-3 Server appliance type definitions and descriptions

Typedef Description

scalar Zero or more characters of any value

word One or more non-whitespace characters

alphanum One or more alphanumeric characters

int A positive integer; any integer except zero preceded by an
optional unary minus (negative) sign, or zero

uint An unsigned integer, which can be any positive integer greater
than or equal to zero

boclean A logical TRUE or FALSE; an empty string (""). Or, the value
zero, which is a logical FALSE, and any other value, which is a
logical TRUE

ipaddr A set of four integers between 0 and 255 separated by periods,
for example, 192.168.1.254

network A network number, such as 10.9.0.0/16

email address

The address of an email user; for example,
harry@esuncobalt .com

netmask A number from 1 to 32, or a dot-quadded IP mask
fdan A fully qualified domain name; for example,
www . suncobalt . com
hostname A non-period host name; for example, www or smtp
domainname A fully qualified domain name or a domain name; for example,
www . suncobalt . comor suncobalt.com
password Scalar data, masked in cced logs

introduction to the Sausalito Architecture

17-17

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Extending an Object’s Schema

Exercise: Extending an Object’s Schema

In this exercise you add functionality to your FTP server. The feature you
add and make available to the admin user through the Server Desktop is
root user access feature. This feature is disabled by default by the Proftpd
application. Extending the schema is the first part of the process to add

this feature to the Server Desktop. You extend the schema of the System
object by adding a FtpRootLogin name space with an enabled property.

Tasks

Complete the following steps to set up a directory structure for your FTP
feature:

1. Open a telnet window and change to the /usr/sausalito/schemas
directory, create new directory using your first name/ftpand
then change to that directory:

c¢d /usr/sausalito/schemas
mkdir -p your first name/ftp
cd your first name/ftp

2. Copy the ftp.schema file from the server-appliance-specific
directory to your current directory and rename the file to
ftproot.schema:

cp /usr/sausalito/schemas/base/ftp/ftp.schema ftproot.schema

Complete the following steps to create and edit your new schema file:

1. Open the ftproot . schema file editing and switch to insert mode:
vi ftproot.schema
1

2. On the line that starts with <class name="System", change Ftp to

FtpRootLogin.

3. On the line that starts with <property name="enabled", change
true to 0.

4. Switch to command mode by pressing the Escape key.

17-18 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, {nc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Extending an Object’'s Schema

5.

Move the cursor down one line and remove the line:

dd

Your final results should look like this, after the initial file comments:

<class name="System" namespace="FtpRootLogin" version="1.0">
<property name="enabled" type="boolean" default="0"/>

</class>

6.

Save and close the file.

:wq

Complete the following steps to restart the CCE server, making the new
name space and property available. Then, check for errors:

1. Check for errors by restarting CCE and then make sure CCE
restarted:
/etc/rc.d/init.d/cced.init restart
Shutting down cced: done
Starting cced: cced
Running CCE constructors:
(root ftpl# ps -e | grep cced
8584 ? 00:00:00 cced
[root ftpl#
If you do not receive a similar result as above, make sure the syntax
in your ftproot . schema file is correct.
Introduction to the Sausalito Architecture 17-19

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Registering an Event Handler

Registering an Event Handler

To register an event handler with the system, create an event handler
configuration file with a .conf extension. The .conf file must contain
the information that defines the class, name space, and properties for the
object to which you want the event handler to be registered. Then, if the
object is modified, the event handler will be triggered and make the
necessary changes to the operating system. The .conf file must also
contain the path to the executable script that is the event handler itself.

The .conf file can be placed anywhere under the /usr/sausalito/conf
directory tree. This makes it possible for third-party software developers
to create their own /usr/sausalito/conf/vendor-name directories, in
which they can store their .conf files.

CCE finds all the . conf files in the /usx/sausalito/conf directory and
subdirectories; however, all file names that begin with a period are
ignored.

Event Handler File Format

The .conf file format is simple and can contain several lines with three
fields per line. For example:

Class.Event Handler definition(File path) Execution stage

Class.Event

Class.Event is a string of text that defines:
! An object

! An optional name space

1 A property or an object

1 An optional name space (optional)

| An event based on the events listed in Table 17-4

Table 17-4 Valid class events

Event Definition
_ CREATE When an object of the specified class is created
17-20 Sun Cobalt Qube™ 3 Plus Server Appliance

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Registering an Event Handler

Table 17-4 Valid class events (Continued)

Event Definition

_DESTROY When an object of the specified class is destroyed

propertyname | When the specified property of the specified class is
changed

Wildcard, which means when any property of the
specified class or class.namespace is changed

Handler Definition

The handler definition is the path to the event handler’s executable script.
This path is preceded by either perl: or exec:. The perl: text causes
CCE to use a persistent Perl daemon, thereby expediting the execution
request. The exec: text executes the script or binary.

Execution Stage

The execution stage allows the handler writer to suggest a relative order
for event handler execution. The following five defined, case-sensitive
execution stages are listed in priority from highest to lowest:

1 VALIDATE

1 CONFIGURE

! EXECUTE

1 TEST

| CLEANUP

If the execution stage is not specified, the event handler is in the EXECUTE

stage. Relative ordering between stages is guaranteed, but ordering
within a given stage is not.

Example: Event Handler Configuration File

The following /usr/sausalito/conf/ftp/ftp.conf file is provided as
an example. When any of the properties are modified on the
System.Ftp.* or System.FileShare.* object and name space, the
/usr/sausalito/handlers/base/ftp/systen.pl script is executed to
handle the request.

Introduction to the Sausalito Architecture 17-21
Copyright 2002 Sun Microsystems, inc. All Rights Reserved. Enterprise Services, Revision B

Registering an Event Handler

This file also controls the script for enabling anonymous FIP, and for
enabling and disabling FIP service monitoring using the Active Monitor.

$Id: ftp.conf,v 1.10 2000/09/15 01:03:54 thockin Exp $
handlers for ftp

#
System.FileShare. * perl:/usr/sausalito/handlers/base/ftp/guest.pl
System.Ftp. * perl:/usr/sausalito/handlers/base/ftp/system.pl
ActiveMonitor.FTP.enabled perl:base/am/am enabled.pl EXECUTE
ActiveMonitor.FTP.monitor perl:base/am/am enabled.pl EXECUTE
System.Ftp.enabled perl:base/ftp/enableAM.pl

17-22 Sun Cobalt Qube™ 3 Plus Server Appliance

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Registering an Event Handler

Exercise: Creating and Registering an Event Handler

In this exercise you continue the process started in “Exercise: Extending
an Object’s Schema” on page 17-18. There, you extended the properties of
the FTP server by adding the FTP root user access feature though the
Server Desktop. Now complete the tasks of creating the event handler
configuration file and writing the executable script for modifying the FTP
server configuration file.

Tasks

Complete the following steps to create the event handler configuration
file:

1. Open a telnet window and change to the /usr/sausalito/cont
directory, create new directory using your first name/ftpand
then change to that directory:

cd /usr/sausalito/conf
#mkdir -p your first name/ftp
cd your first name/ftp

2. Open for editing a ftpRootAccess.conf file and switch to insert
mode:

vi ftpRootLogin.conf
i

3. Add the following text (use a tab for the space between enabled and
perl):

handler for ftp root login

#

System.FtpRootLogin.enabled perl:/usr/sausalito/handlers/your first
_name/ftp/rootLogin.pl

Make sure you replaced the your first name, with your real first
name!

4. Switch to command mode by pressing the Escape key.

5. Save and close the file:

twgq

Introduction to the Sausalito Architecture 17-23
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Registering an Event Handler

Complete the following steps to write the executable event handler Perl
script for adding the root access directive to the FTP server configuration
file:

1. Change to the /usr/sausalito/handlers directory, create new
directory using your first name/ftpand then change to that
directory:

cd /usr/sausalito/handlers
#mkdir -p your first name/ftp
cd your first name/ftp

2. Open for editing a rootLogin.pl file and switch to insert mode:
vi rootlogin.pl
i

3. Insert the following text exactly as shown into the file. Use the Tab

key to indent lines. It might take several attempts to get the text
exactly right, so take your time.

Note - This script is written to be streamlined and it does not follow good
%{/ programming syntax guidelines for providing comments about the

script’s use.

#1/usr/bin/perl -w -I/usr/sausalito/perl -I.
System.FtpRootLogin.enabled modify handler
use strict;

use Sauce::Config;

use Sauce::Util;

use CCE;

my $cce = new CCE;
$cce->connectfd () ;

my $oid = $cce->event oid();
my ($ok, $obj) = $cce->get($oid, 'FtpRootLogin');

if (1%0id) {
$cce->bye ('FAIL') ;
exit (1) ;

}

#
my $enabled = $obj->{enabled} ? "on" : "off";

my $fun = sub {
my ($fin, $fout) = (shift, shift);

17-24 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Registering an Event Handler

my $found = 0;
my $conf = "RootLogin\t\t\t$enabled\n";

while (defined($ = <$fin>)) {
if (/" \s*RootLogin/) {
print $fout $conf;
Sfound = 1;
} else {
print $fout $;
}
3

print $fout $conf unless ($found);
return 1;

}:
my $ret = Sauce::Util::editfile("/etc/proftpd.conf",
$fun) ;
if ($ret) {
$cce->bye ('SUCCESS') ;
exit(0);
} else {
$cce->bye ('FAIL');
exit(1);
}

4. Switch to command mode by pressing the Escape key.
5. Save and close the file:

1wq
6. Execute the file at the command line to test the syntax:

perl -cw rootLogin.pl
rootAccess.pl syntax OK
[root ftpl#

The -cw option tells Perl to compile, but not execute, the program
and to display warnings about errors.

If you receive warnings, check the contents of the rootAccess.pl
file and make any necessary changes until you receive no more
warnings.

Introduction to the Sausalito Architecture 17-25
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Registering an Event Handler

7. Restart CCE:

/etc/rc.d/init.d/cced.init restart
Shutting down cced: done

Starting cced: cced

Running CCE constructors:

[root ftpl#

17-26 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

CSCP Communication With CCE

CSCP Communication With CCE

Communication to CCE is done through CSCP and there are two modes
of communication: client mode and handler mode. The handler mode has
more commands than the client mode.

CCE Communication Modes

CSCP is shown in Table 17-1 on page 17-13. CSCP is used in the handler
mode for communication between CCE and the event handlers; it is also
used for communication between CCE and the Server Desktop.

CSCP is used in the client mode to establish a direct connection to CCE. To
establish a direct connection to CCE, the cceclient utility is executed
from the command line: /usr/sausalito/bin/cceclient. Table 17-5
lists the commands used for both client and handler CCSP
communication modes.

Table 17-5 The client and handler mode commands

Command Description

auth Authenticates as a user to get that user's access privileges (starts a new
session)

authkey Authenticates to an already existing session

endkey Expires the current sessionid

whoami Returns the oid (Object Identification) of the currently authenticated user

bye Closes the connection

commit Triggers any postponed handler activity

create Creates a new object of a certain class

destroy Destroys an object

find Finds all objects that match a given criteria

get Gets all properties for a certain object or object name space

names Lists name spaces associated with a class

classes Lists all classes

set Sets the properties of a certain object

Introduction to the Sausalito Architecture 17-27
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

CSCP Communication With CCE

Table 17-6 contains additional commands that are available in the handler
mode when the CCE is communicating with an event handler:

Table 17-6 Additional Handler Mode Commands

Command | Description

baddata Reports that an unrecognized attribute or value was
passed

info Reports a piece of information

warn Reports a warning or error

CCE Response Codes

For every command given to CCE, a response code is returned. These
response codes consist of a numeric code and a set of arguments. The
value of the first digit of the numeric code defines whether the message is
an informational message (1), a success message (2), a warning message
(3), a failure message (4), or a system-issued message (9). Table 17-7
describes the response types.

Table 17-7 CCE Response Codes

g::;;elr{l:nge Type of Response

100-199 Informational

200-299 Success

300-399 Warning

400-499 Failure

900-999 System-issued message (which can be sent at any time)
17-28 Sun Cobalt Qube™ 3 Plus Server Appliance

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Testing Systems Changes From cceclient

Exercise: Testing Systems Changes From cceclient

In this exercise you test the new feature added to the FTP server for root
login access. This test must be successful before you extend the Server
Desktop with new menu items.

Tasks

Complete the following steps to determine the object number for the
System object and test the FTP server changes performed by the event
handler:

1.

In telnet, communicate to CCE using the cceclient utility and fine
the number for the System object:

/usr/sausalito/bin/cceclient
100 CSCP/0.80

200 READY

find System

104 OBJECT 1

201 OK

2. Open another telnet session and list the /etc/proftpd.conf file

contents:
cat /etc/proftpd.conf
Notice that no RootLogin directive is listed in the file.

3. Inthe first telnet session that has cceclient running, for the Systemn
object {object 1), set the FtpRootLogin name space’s enabled
property to 0. (Zero equals off.)
set 1.FtpRootlogin enabled="0"

201 OK
4. In the other telnet session, list the /etc/proftpd.conf file:

cat /etc/proftpd.conf

Notice the last line of the file reads RootLogin off
Introduction to the Sausalito Architecture 17-29

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Testing Systems Changes From cceclient

5. Try to log in to the FTP server as root and exit:

ftp localhost

Connected to localhost.

220 ProFTPD 1.2.0 Server (ProFTPD)
[www. server appliance.com]

Name (localhost:admin) : root

331 Password required for root.
Password: your password

530 Login incorrect.

Login failed.

ftp> exit

Notice the Login Failed.

6. In the telnet window that has cceclient running, set the System
object’s FtpRootLogin name space’s enabled property to 1. (One
equals on.)

set 1.FtpRootLogin enabled="1”"
201 OK

7. In the other telnet session, list the /etc/proftpd. conf file:

cat /etc/proftpd.conf

Notice that the last line of the file reads RootLogin on
8. Log in to the FTP server as root and exit:

ftp localhost

Connected to localhost.

220 ProFTPD 1.2.0 Server (ProFTPD)
[www.server appliance.com]

Name (localhost:admin): root

331 Password required for root.
Password: your password

230 User root logged in.

Remote system type is UNIX.

Using binary mode to transfer files.
ftp> exit

Notice the 230 User root logged in.

17-30 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

GET Requests

GET Requests

GET transactions deliver Hypertext Markup Language (HTML) content to
the end-user’s browser. This is done using a combination I118n
(internationalization) components, PHP scripting, and XML menu item
and style files.

The Server Desktop (Figure 17-8) in the server appliance is a dynamic
structure. It is generated from a set of files that define its menu items,
language, and style. Whenever a user logs in to the Server Desktop, these
files are examined and the Server Desktop is generated.

|
|

GET = PHP Scripts }4——>‘ CCE |

i18n T UIFC
Menu | Style w
XML - XML

Files | @ Files

Figure 17-8 Sausalito Server Desktop rendering

To explain the components and processes involved in generating the
Server Desktop, the remaining sections of this module examine the
following items.

! Server Desktop screen-generation process
I Server Desktop configuration file

] Server Desktop menu structure

1 [18n components

1 User Interface Foundation Classes (UTFC)
! HTML Component Factory

1 Style definition files

Server Desktop Screen-Generation Process

To display data and images on the monitor, the client browser sends a
request to the Apache Web server with PHP compiled in. The Apache
Web server executes PHP scripts, reads the Server Desktop configuration

Introduction to the Sausalito Architecture 17-31
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

GET Requests

file, retrieves object information and property values from codb, retrieves
menu structure and style information from XML files, retrieves language
preferences from the browser or user object, and retrieves the Server
Desktop elements from the UIFC.

The Apache Web server then creates HTML code and sends it to the client
browser to render the Server Desktop. Figure 17-9 describes the Server
Desktop screen-generation process.

GET 1. The client requests the administration
) pages by logging in. The request is
Transactions handled by the Web server.

2. The Web server in turn passes the
request to PHP scripts.

3. The PHP scripts gather the
information to form the Server

Client Desktop from:
Requests ! CCE (for the users, groups,

4 system, and services status)
Server Appliance | N
and Web Server

1 118n (to pull the correct
language text for menu items

) 7 \
W C ?) and help text)
; T 1 XML files (for the style and the
B menu structure)
cp - PHP Script
— }' Cnps ‘] UIFC (for the Server Desktop
t T —3~\ widget information and behavior)
UIFC, | 18n 714 After everything is pulled together by
Menu XML | | Style XML | the PHP scripts, it is sent back to the
| \ Files | client as HTML code.

Files

Figure17-9 The screen-generation process

Server Desktop Configuration File

The PHP scripts determine the file-system locations for the menu and
style definitions by reading the /usr/sausalito/ui/conf/ui.cfg
Server Desktop configuration file. This file defines locations for the Server
Desktop screen generation.

17-32 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, inc. Alt Rights Reserved. Enterprise Services, Revision B

Navigation Sub-System Overview

Navigation Sub-System Overview

The navigation system within the Server Desktop manages the site maps.
Users can modify site maps by adding and removing nodes, which are
then interpreted by navigation managers.

Server Desktop Rendering

The structure and contents, known as the site map, of the Server Desktop
are generated from XML files that are simple and contain one menu item,
also known as nodes, per file. These XML files are located under the
/usr/sausalito/ui/menu/ directory and subdirectories.

To add a node to the site map, create a new XML file under the
/usr/sausalito/ui/menu/ directory. To remove a node from the site
map, remove the node’s XML file. The names of the XML files and the
subdirectories in the /usr/sausalito/ui/menu/ directory have no
impact on the site map definition. The subdirectories are merely used for
organizing the XML site map node files.

For organizational purposes, the Server Desktop XML menu item files are
located in service-name and function-name subdirectories (for
example, addressbook/, maillist/, and backup/) under the
/usr/sausalito/ui/menu/base directory.

Third-party software developers can create new directories under the
/usr/sausalito/ui/menu directory to keep their menu item files
organizationally separate.

Introduction to the Sausalito Architecture 17-33
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Navigation Sub-System Overview

Menu ltem File Examples

Figure 17-10 shows an expanded FTP Menu. You can access this menu
from the Server Desktop by clicking Administration tab %o File & Print %o
FTP menu. The callouts on Figure 17-10 refer to the text below the figure.
These are the actual XML files that define the Administration tab, the
File & Print menu group, and the FTP menu item (or site map nodes).

£« Sun Cobalt

> Users & Groups

' Email
AR < File & Print
3 W_!\firndowsa

_Gdest Share T
Print Server

Figure 17-10 Server Desktop, File Services % FTP Menu expanded

1. Administration tab file: administration.xml (these code lines
wrap)

<item id="base administration"
label="[[base-carmel.base-administration]] "
description="{ [base-carmel.base-administration description]]"
url="/splashAdmin.php"
requiresChildren="1">
<parent id="root" order="10">
<access require="systemAdministrator"/>
</parent>
</item>
2. File Services menu group file: fileSharing.xml

<item id="base fileSharing" label="[[base-fileshare.fileSharing]]"
description="[[base-fileshare.fileSharing help]]" >

<parent id="base administration" order="30"/>
</item>

17-34 Sun Cobalt Qube™ 3 Plus Server Appliance

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Navigation Sub-System Overview

3. FTP menu item file: ftp.xml

<item id="base ftp" label="[[base-ftp.£ftpl]l" description="[[base-
ftp.ftp helpll" url="/base/ftp/ftp.php">
<parent id="base fileSharing" order="50" >

</parent>

</items>

<access require="adminFtpServer"/>

Menu ltem File Attributes

The administration.xml file contains the text

<access require="systemAdministrator”/>. This text indicates that,
for a user to access the Administration tab, the user’s uiRights property
must be set to systemAdministrator.

Also, to gain access to any XML menu file that uses the
administration.xml file's base administration item ID, the parent
menu item file also has to meet the same uiRights property requirement.

Table 17-8 XML file elements and attributes

Element | Attribute Description
item id The id item must be unique among the XML files. Therefore,
it is advisable to prepend a vendor tag to the id.
label The label item is a short readable string that labels the node.
Navigation managers can display a list of labels for users to
navigate to.
description | A label can sometimes be too short. A descriptionis used
complement the label by describing what the node is about.
type The type item is used by navigation managers to distinguish
items. Navigation managers can then act on the items
differently.
url The url points to the content page of this node.
Introduction to the Sausalito Architecture 17-35

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Navigation Sub-System Overview

Table 17-8 XML file elements and attributes (Continued)

Element

Attribute

Description

parent

id

This is the 1d of the parent node, as described in the item id
element. Nodes can have multiple parents.

order

When there are several children nodes under a parent node,
the navigation managers might need to know which child to
use first. The smaller the order integer, the more important

the node.

access
require

This attribute is used to specify the access rights for the
resource (the XML menu item file). If the value of the user
object's uiRights property does not equal the value of this
attribute, the user can not view the menu item, and therefore
the user can not administrate or modify the system for that
resource.

17-36

Parent Access Attribute

In the ftp.xml file listing, there is a line that says
caccess require="adminFtpServer">. Access to the parent elements is
controlled by this access require element:

1 If there is no access require element, the parent link has no access
control and anyone can traverse the link.

! If there is one access require element, access is granted if and
only if this requirement is met.

| If there is more than one access require element, access is granted
if any one of the multiple requirements is met. In other words, this is
an “or” condition.

You learn about the access require element in “Defining
Administration Capabilities for Users” on page 17-48.

Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Extending Server Deskiop Menu ltems

Exercise: Extending Server Desktop Menu ltems

In this exercise you create the necessary XML files to add a menu item to
the Server Desktop for your application.

Tasks

Complete the following steps to create the ftp.xml file:

1. In a telnet window navigate to the /usr/sausalito/ui/menu/
directory, create a new directory using your first name/service-
name and change into that directory:

cd /usr/sausalito/ui/menu/
mkdir -p your first name/ftp
cd your first name/ftp

2. Copy the /usr/sausalito/ui/menu/base/ftp/ftp.xml file into
your new ftp directory and open for editing:

cp /usr/sausalito/ui/menu/base/ftp/ftp.xml ftp.xml
vi ftp.xml

3. Use the following three commands to make text changes in the file:

:s/base/your first name/g
:%s/50/60/g
:%38/Server /RootLogin/g

Leave the parent id="base fileSharing" text alone, because you
are building off the existing server appliance menu navigation item.

4. Save and close the file:

Wwq

Complete the following steps to view your menu item:

1. Open your browser and log in as admin to the Server Desktop. If
you are logged into your Server Desktop already, log out and then
log back in.

Introduction to the Sausalito Architecture 17-37
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Extending Server Deskiop Menu ltems

2. Click File & Print.

Your results should similar to Figure 17-11.

Sun Cobalt

‘T«’ Users & Groups
© Email
& File & Print

g Apple TG .
Guest Share Maximum Simult

e

Enable Semver

Warkgroup

Figure 17-11 Server Desktop added menu item

17-38 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Internationalization

Internationalization

Sausalito has integrated internationalization. (Internationalization is often
referred to as “I18n,” which stands for “I - eighteen letters - n.”) I118n is
the process of planning and implementing products and services so that
they can easily be adapted to different languages.

Localization is also part of the 118n component. (“Localization” is often
referred to as “L10n,” which stands for “L - ten letters - n.”) L10n is the
process of adapting a product or service to a particular language, culture,
and look and feel.

Usually, programs are written and documented in English, and they use
English at execution time to interact with users. This is not the case with
Sausalito on the server appliance platform. The 118n implementation in
Sausalito is based on the GNU gettext tools, and it is designed to
minimize the impact of 118n.

118n Components

The I18n directories are located under the /usr/share/locale/
directory. A listing of the /usr/share/locale/ shows the locale
directories, whose names are equal to the ISO-636 language codes and
ISO-3166 country codes.

By using the ISO codes, languages are packaged as components. L10n
components contain only locale-sensitive data that specifies a particular
locale. For example, strings, currency format, date format, and number
format are packaged into locale components. Strings are stored in
domain.mo files under /usr/share/locale/ISO code/LC MESSAGES/
directories.

Selecting a Language

By logging in and navigating to Personal Profile %o Account %o
Account Settings, users can change their language preference from the
Language Preference drop-down list.

By default, when users are created, their language preference is set to <Set
From Browser Options>, which means the server appliance determines
which language to use by the language to which the user’s browser is set.

Introduction to the Sausalito Architecture 17-39
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Internationalization

If the language to which the browser is set is not available on the server
appliance, the server appliance uses the default language setting defined
in the /usr/sausalito/ui/conf/ui.cfg file. By default, this is set to
defaultLocale=en (English).

In Sausalito, which language to use for the Server Desktop is based on the
two-letter ISO-639 language codes, the two-letter ISO-3166 country codes,
and optional variant codes. Figure 17-12 shows the Sausalito language
selection process.

The language to be After the language is The tags in the XML menu and PHP files
displayed for the user determined the Server refer to the file-names in the

can be set by the Desktop uses tags ta /usr/share/locale/<I180 code>
browser preference or call the correct text for /LC_MESSAGES directories, minus the .mo
by user selection display in the browser. file extension, plus the message identifier:
through the Server tags = [[file-name.msgid]]

Desktop. English is
used as the default if
the browser selection is
unavailable. Lo af
r> lar
- /bg
> /ca
= /cs
> /da
- /de

T /el JLC_MESSAGES

> /en base-addresshook.mo

> /eo base-dhcpd.mo

i base-ftp.mo
base-modem.mo
base-snmp.mo
base-webstats.mo

/usr/share/locale

la—— Server Desktop -

Figure 17-12 Server Desktop language selection process

17-40 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Internationalization

Adding New Languages

Adding new languages is straightforward. The difficulty is keeping track
of all the message IDs available through the Server Desktop and where
they are all placed. Figure 17-13 shows the process for making I18n
components available for Sausalito GET transactions.

Step1
The .po files are created that
contain message ids (msgid)
and message strings (msgstr).

msgid "ftp"
msgstr "FTP Server"

msgid "frp_help"
msgstr "This is FTP helip"

nggid "menu_item_label"
msgstr "FTP"

msgid “check_box_label"
msgstr "FTP Server on/off"

Figure 17-13

The

Step 2
.po files are compiled into The .mo files are copied into
.mo files for use by the i18n /usr/share/locale/
program, <ISO code>/LC_MESSAGES
directories.
Compiled Program /usr/share/locale
.mo Files: "} af/LC_MESSAGES/
> ar/LC_MESSAGES/
QRAAERAQ@ +» bg/LC_MESSAGES/
[@ellPEREE] [ca/LC_KNESSAGES/
[@elleEREE] [cs5/LC_MESSAGES/

—-

Leeeeeeee =P

Introduction to the Sausalito Architecture
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Emterprise Services, Revision B

I da/LC_MESSAGES/
de/LC_MESSAGES/
> e1/LC_MESSAGES/
- en/LC_MESSAGES/

- €o/LC_MESSAGES/
es/LC_MESSAGES/

[18n language availability process

17-41

Exercise: Adding an 118n Server Desktop Message File

Exercise: Adding an 118n Server Desktop Message File

In this exercise you create text for your new feature in the Server Desktop
that uses the I18n component for language expandability.

Tasks

Complete the following steps to create a vendor-specific .po file:

1. Navigate to the /opt directory, create a new directory using
your first name/il8n/po-files/en and then change to that
directory:

cd /opt
mkdir -p your first name/il8n/po-files/en
cd your first name/il8n/po-files/en

2. Open for editing a your first name-ftp.po file:

vi your first name-ftp.po
i

3. Enter the following message identifiers (msgid) and strings (msgstx),
starting the file with one blank line on top:

[blank line, no text]
msgid "ftp"
msgstr "FTP Root Login"

msgid "ftp help"

msgstr v

“Turn the FTP root user login on or off, by enabling *
"the above check box, and saving the changes"

msgid "nameTagHelp™
mggstr "Can manage FTP root login feature"

msgid "nameTag"
msgstr "Manage FTP Root Login®

msgid “ftpSettings"
msgstr "FTP Server Root User Login Setting"

msgid "enableRootLogin"
msgstr "Enable Root User Login™"

msgid "enableRootLogin help"
msgstr "[[jeff-ftp.ftp helpll"

17-42 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Adding an [18n Server Desktop Message File

4. Save and close the file:

Wq

Complete the following steps to compile the .po file into the .mo file,

copy to the I18n directory, and restart the Server Desktop server to make
the new text available for use.

1. Compile the your first name-ftp.po file into the English (en)
[18n component directory as your first name-ftp.mo:

msgfmt -e your first name-ftp.po -o
/usr/share/locale/en/LC MESSAGES/your first name-ftp.mo

2. Restart the Server Desktop server (admserv):

/etc/rc.d/init.d/admserv restart
Stopping admin web server: ahttpd
Starting admin web server: ahttpd
[root po-filesl#

In upcoming labs, the correctness of your [18n component
programming is checked.

Introduction to the Sausalito Architecture 17-43
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

User Interface Foundation Classes

User Interface Foundation Classes

The User Interface Foundation Classes (UIFC) is a comprehensive set of
class libraries for the Server Desktop components. The UIFC is made from
the PHP and JavaScript™ files located in the
/usr/sausalito/ui/1ibPhp/uifc and
/usr/sausalito/ui/web/1libJs/uifc directories, respectively.

These directories contain files that generate HTML code for page
rendering and JavaScript code for error checking. The
/usr/sausalito/ui/libPhp/uifc directory contains the *.php files
used for HTML code generation to build the Server Desktop elements.
The /usr/sausalito/ui/web/1libJs/uifc directory contains the *.js
files used for data-entry error checking.

The UIFC make object classes available to software developers to simplify
Server Desktop creation. These class libraries contain the templates for
building visual components, such as buttons, bars, Boolean components,
form fields, domain names, email addresses, IP addresses, scroll lists,
radio buttons, time zone formats, and so on. The UIFC are designed for
seamless integration with I18n.

HTML Component Factory

The HTML Component Factory simplifies the task of instantiating and
initializing the Server Desktop elements. This factory is a template file for
what you see in the Server Desktop, and it handles most cases of
instantiating and initializing objects.

Note — To use the UIFC, you need to understand object-oriented design

/“ and programming, as well as PHP. This is because the UIFC classes are
) object-oriented and implemented in PHP. Detailed information about the
" use of the UIFC with PHP programming is beyond the scope of this
course.
17-44 Sun Cobalt Qube™ 3 Plus Server Appliance

Copyright 2002 Sun Microsystems, Inc. All Bights Reserved. Enterprise Services, Revision B

Exercise: Building Pages Using the UIFC and 118n

Exercise: Building Pages Using the UIFC and 118n

In this exercise you build Server Desktop pages for your FTP root access
feature. You modify existing PHP code and test its functionality as
follows:

Tasks

Complete the following steps to create a Server Desktop page file for your
new FTP server feature:

1. In telnet, navigate to the /usr/sausalito/ui/web directory and
create a new directory using your first name and then change to that
directory.

cd /usr/sausalito/ui/web
mkdir -p your first name/ftp
cd your first name/ftp

2. Copy the /usr/sausalito/ui/web/base/ftp/ftp.php file into
your new ftp directory and open the file for editing:

cp /usr/sausalito/ui/web/base/ftp/ftp.php ftp.php
vi ftp.php

3. Enter the following three commands to change text in the file:

:%s/base/your first name/g
:%s/”Ftp” /" FtpRootLogin” /g
:%s/ServerField/RootLogin/g

4. Remove the following four lines from the file:

Sblock->addFormField(
Sfactory->getInteger ("maxUserField", s$ftp["maxConnections"], 1, 1024),
$factory->getlabel ("maxUserField")
)
5. Save and close the file:

:wq

Introduction to the Sausalito Architecture 17-45
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Building Pages Using the UIFC and 118n

Complete the following steps to create the Server Desktop page handler
file for your new feature:

1. Copy the /usr/sausalito/ui/web/base/ftp/ftpHandler . php file
into your ftp directory and open the file for editing:

cp /usr/sausalito/ui/web/base/ftp/ftpHandler.php
ftpHandler.php
#vi ftpHandler.php

2. Enter the following three commands to change text in the file:

:%s/ServerField, /RootLogin) ; /g
:%s/"Ftp” /"FtpRootLogin”/g (Make sure you use capital ‘F’)
:%s/base/your first name/g

3. Remove the line, which reads "maxConnections" ..., then save
and exit:

/max
dd
twqg
Complete the following steps to view your page in the Server Desktop:
1. Open your browser log out and back in as admin.
2. Click File & Print.
3. Click FTP Root Access.

Your results should look similar to :

© Users & Groups
© Email

FTP Root Login

Figure 17-14 Successful [18n Server Desktop text addition

If you do not receive the results as above, go back and verify that
your file syntax is correct, and repeat the process until you receive
the results shown in Figure 17-14.

17-46 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Building Pages Using the UIFC and [18n

Complete the following steps to test the FTP root access feature:
1. In telnet, view the last line of the /etc/proftpd.conf file:

tail -1 /etc/proftpd.conf
RootLogin on

2. In your browser, uncheck the Enable Root User Access feature, and
click Save.

3. In telnet, view the last line of the /etc/proftpd. conf file:

tail -1 /etc/proftpd.conf
RootLogin off

Introduction to the Sausalito Architecture 17-47
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Defining Administration Capabilities for Users

Defining Administration Capabilities for Users

17-48

One feature on the server appliance is the ability to distribute the
administration tasks, known as capabilities, to regular users. Distributing
capabilities to regular users is handled within the Sausalito.

Capabilities are made available in the Server Desktop by creating a
capability object. When the admin accesses a users Administration tab >
Users and Groups % User List % Modify User %. Capabilities tab, all
capability objects are displayed as shown in Figure 17-15.

Modify User Settings - jbravo

{Aam';;ggu;;ammagup ;.WWM,M A ———
Maﬁag‘;le’LDAF‘ Diréctary
Manage Ermail

Manage Mailing Lists

Manage File Sharing

Manage Print Server

Manége Web Server

Manage Web Caching and Web
Access

hdanaas TOEAD and intorget .

J e e B (R B R

Figure 17-15 User capability settings

Once the admin has selected the capabilities for a user, the access to
administrator the capability is handled in Sausalito. What happens is the
user allowed to access the administration screens associated with the
capability. The user does not actually receive admin permissions to the
service, but is allowed access through the Server Desktop to modify the
feature or service.

If a regular user is giving the capability to Manage Users and Groups, the
user can pass along the capability other users, for which the user has
access. However, the user can not pass along capability access for which
the user is not granted.

Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Defining Administrative Capability for Users

Exercise: Defining Administrative Capability for Users

&

In this exercise you make available the FTP root login feature available as
a capability. This involves creating a new object in codb and defining the
object’s properties.

Tasks

Complete the following steps to create a administrative capability object:

1.

In telnet, access the cceclient, create a CapabilityGroup object for the
FTP root login feature, set the object’s property values (replace the
object number ‘60" below with the object number produce by your
server appliance) and exit:

/usr/sausalito/bin/cceclient

100 CSCP/0.80

200 READY

create CapabilityGroup name="adminFtpRootLogin"
104 OBJECT 60

201 OK

set 60 nameTagHelp="[[jeff-ftp.nameTagHelp]]™"
201 OK

set 60 nameTag="[[jeff-ftp.nameTagll®"

201 OK

set 60 capabilities="modifyFtpRootLogin"

201 OK

bye

202 GOODBYE

Note — Instead of using one create command and three set commands,
you could have typed one create command and set the property values
on one line.

Complete the following steps to add delegate the administrative FTP root
login feature to a user and verify the capability:

1. In your browser, click on Users and Groups.

2. Click the green modify pencil to the right of the user jbravo.

3. Click jbravo’s Capabilities tab.

4. Select the Manage FIP Server Root Login capability and Save.
Introduction to the Sausalito Architecture 17-49

Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Defining Administrative Capability for Users

5. Log out as the admin user, by clicking the open door icon located in
the upper right-hand side of the Server Desktop and log in as
jbravo by entering jbravo for the username, suncobalt for the
password and click Login.

6. Select the Files Services menu item.
7. In telnet, verify the /etc/proftpd. conf files RootLogin line:
tail -1 /etc/proftpd.conf

8. In your browser, enable the Enable Root User Login, by placing a
check in the check box and click Save.

9. In telnet, verify the /etc/proftpd.conf files RootLogin line:

tail -1 /etc/proftpd.conf

17-50 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Style Definition Files

Style Definition Files

The

Sausalito also enables software developers to customize the visual
appearance of the Server Desktop by defining their own styles. To define
the Server Desktop style, the UIFC uses an XML file. By default, the server
appliance uses the /usr/sausalito/ui/style/trueBlue.xml file. By
adding more XML style files, you can define additional Server Desktop
styles.

trueBlue.xml Style File

By default, the server appliance uses the file called trueBlue.xul for its
style definition. This file contains the definitions for the visual appearance
that the UIFC use; it is located in the /usr/sausalito/ui/style
directory.

Sausalito is designed for extensibility, so do not be surprised if you find a
server appliance that uses a style other than the standard style defined by
the /usr/sausalito/ui/style/trueBlue.xml file.

The code below is part of the /usr/sausalito/ui/style/trueBlue.xml
style file, which defines the style for the Server Desktop elements. This file
defines the Server Desktop colors of backgrounds, frames, dividers, text;
font size, weight and emphasis, and the images used for buttons, logo,
tabs, tiles, bars, icons, arrows, and so on.

<style Resource name="[[trueBlue.trueBlue]]">
<style id="Page">
<property name="aLinkColor" value="#0033CC"/>
<property name="backgroundImage"
value="/libImage/blocksTileSmall .gif"/>
<property name="center" value="true"/>
<property name="fontFamily" value="sans-serif"/>
<property name="fontSize" value="12pt"/>
</style>

This course does not go into details concerning XML programming for the
/usr/sausalito/ui/style/trueBlue.xml file.

Introduction to the Sausalito Architecture 17-51
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Style Definition Files

Selecting Your Server Desktop Style

Additional styles are defined by the presence of more XML files than just
the trueBlue.xml file in the /usr/sausalito/ui/style directory. If
additional XML files are present, users can select which style they want to
use in the Style drop-down list on the Account Settings page. From the
Server Desktop, click Personal Profile Tab %. Account page. If only one
XML file is present in the /usr/sausalito/ui/style directory, the
Style drop-down list is unavailable.

17-52 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Applying Server Desktop Styles

Exercise: Creating and Applying Server Desktop Styles

In this exercise you adding a green color style to the Server Desktop. This
is one step in the process of adding your own look and feel to the server
appliance, and it is part of the extensible features of Sausalito.

Tasks

Complete the following steps to create and edit a new style file:

1.

In your console window, navigate to the
/usr/sausalito/ul/style directory, create your new style file,
and open the file for editing:

cd /usr/sausalito/ui/style
cp trueBlue.xml testGreen.xml
vi testGreen.xml

Remove the reference to the True Blue style name, change some of
the Server Desktop colors from blue to green, and exit the file:

:%s/trueBlue/TestGreen/g
:%s/FFFFFF/66CC00/g

28 substitutions on 28 lines
twq

Complete the following steps to add the 118n text for your newly defined
style:

1.

Navigate to the /opt/your first name/il8n/po-files/en
directory, create and open for editing a TestGreen.po file:

cd /opt/your first name/il8n/po-files/en
vi TestGreen.po

Enter the following message identifier (msgid) and string (msgstr),
starting the file with one blank line on top, save and exit the file:

[blank line, no text]
msgid "TestGreen"
msgstr "Test Green"

Save and exit the file:

:wg

Introduction to the Sausalito Architecture 17-53
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Exercise: Creating and Applying Server Desktop Styles

Complete the following steps to compile the testGreen.po file and
restart the Server Desktop server to make the new text available for use.

1. Compile the .po file into the .mo file and restart the admserv:

msgfmt -e TestGreen.po -o
/usr/share/locale/en/LC MESSAGES/TestGreen.mo
/etc/rc.d/init.d/admserv restart

Stopping admin web server: ahttpd

Starting admin web server: ahttpd

#

Complete the following steps to enable the new style you created:

1. From your browser, log out, then log back in and navigate to the
Personal Profile tab.

2. Click the Account menu item.

3. Now select the Test Green style in the Style drop-down list, and click
Save.

You should receive a pop-up window that looks like Figure 17-16:

129.145.123.184.444 - [JavaSciipt Application]

;/ ! ‘1 Your wet browser will now refresh éutomatical[y to use the chasen style. -
p- % e

Figure 17-16 Style Change Pop-up Message

4. Click OK.

The result should be that the text in left menu bar and in the window
background on the pages is now green.

17-54 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Module Wrap-up

Module Wrap-up

Make sure that you can answer the following questions. See Appendix A
for answers.

1. What is the key benefit that Sausalito offers for the server appliance?

Answer:

2. What is the concept of object-oriented programming?

Answer:

3. What are the benefits of SET transactions and GET requests?

Answer:

4. What is the purpose of the Cobalt Configuration Engine (CCE)?

Answer:

5. What are the responsibilities of CCE?

Answer:

6. What administers Sausalito and is responsible for initiating event
handlers?

Answer:

Introduction to the Sausalito Architecture 17-55
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Module Wrap-up

7. How are objects in codb identified?

Answer:

8. Is codb a database? What is its function?

Answer:

9. How do services and applications register themselves in CCE?

Answer:

10. How can you benefit by using event handlers?

Answer:

11. What is the purpose of Type Definitions?

Answer:

12. What fields are in the registration .conf files?

Answer:

13. What does the handler execution stage permit?

Answer:

17-56 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Module Wrap-up

14. What are the handler execution stages?

Answer:

15. What happens if the handler execution field is left off during the
execution stage?

Answer:

16. What is the /usr/sausalito/bin/cceclient command used for?

Answer:

17. How do GET requests deliver HTML content to the end-user?

Answer:

18. What is the purpose of the /usr/sausalito/ui/conf/ui.cfg file?

Answer:

19. What kind of files are located in the /usr/sausalito/ui/menu
directory?

Answer:

20. What tool is I18n based on in the Sausalito architecture and what
benefit does it provide?

Answer:

Introduction to the Sausalito Architecture 17-57
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

Module Wrap-up

21. How can users change their language preference?

Answer:

17-58 Sun Cobalt Qube™ 3 Plus Server Appliance
Copyright 2002 Sun Microsystems, Inc. All Rights Reserved. Enterprise Services, Revision B

