a5(ie t_m1tch_li 1 = a5(ie t_m1tch_elem78 [ a5(ie t_m1tch_elem78 ... ] a5(ie t_m1tch_elem78 = [ "!" ] ( ip_a5(ie t / ip_pisfix / acl_fes / "key" key_id / { a5(ie t_m1tch_li 1 } ) ;
A5(ie t2m1tch)li 1s2arsop (5 ting anei geSdeterminevac66ss coy .ol at)
vaFiouster ser2rv).158E s. Tm y are)aeso anei geSdefi( epF(or ties
at) 15 Fy
(ior whones srsvers an1 to sr1 tc sa5(ie t .4an which
nes d
willsli 1eF)you)15 F(r..
The elem78 svwhichtc (utitut )an a5(ie t2m1tch)li 12chan5 Fany
arv-pe4fhe nwiie:
key
statem78 , o)
acl
statm78 , o)Elem78 svchan5 Fnegi121 gher aElead
(texcla55 E F)5 tk ("!"), a6
theSm1tch)li 12fes .4"any", "non2", "l17 4 lat" an1 "l17 4n2ts" aae
predefi( (. Moreoin
-.55 E F) F)tc ne fes .4chan5 Ffound139
the
descrip E F.ar theSacl
statem78 .
Tceoa5(i E F.ar theSkey
claus6S de theSfes tarv-pal2ryy ac1ic elem78 2Ros thiie.4f a
misnos r, s3
66.s15ui81yekeys2chan5 Fanei to valid1tivac66ss F(BIt
regird foSashlatSor4feow2.5ta5(ie t. Non2thelesl,v-pe4term "a5(ie t
m1tch)li 1".al2Rtillsanei thrBIghBIts-pe4documentat E .
Wheeva2gia)e5IP a5(ie t or d sfix al2tompar d foSan a5(ie t2m1tch
li 1, tce2li 1tal
traversei in order2until an nlem78 2m1tches. Tm
anferpreta58E sarva m1tch)depend.4an wher whstheSli 1tal
be
(oanei
orw)ac66ss coy .ol, defi(
(oli 1eF-on
ports, o) as a
topology, a6
.wher whstheSnlem78 2wal2negi121.
Wheevanei as an ac66ss coy .ol li 1, aofon-negi121 m1tch)ae nws
ac66ss a6
.aEnegi121 m1tch)den(r. ac66ss. If tc/is al2no m1tch,
ac66ss al2den(rd. Tm tclaus6soae nw-15 Fy
,
ae nw-transf56
,oae nw-upd1ti
a6
blackholi
allsane a5(ie t2m1tch)li 1s.like
tpal.
Similarly, theSli 1eF-on
ap E F)willscaus6Stc swisver2to not ac66pt415 F(r. E . ly.ar the
mac2
)'saa5(ie t .4whichtdo not m1tch)theSli 1.
Wheevanei gher tce2topology
claus6, aofon-negi121
m1tch)r1turnl2a dista8ce bas d on 3tsaposi E F) F)tceSli 1t(tc scl ner
theSm1tch)is to2theSstartoarv-pe4li 1, tce2shorter2-pe4dista8ce is
betwe)e5it2andSes swisver). SA2negi121 m1tch)willsbs ssignei the
maximum4dista8ce ai)-.-peter ser. If tc/is al2no m1tch, tc sa5(ie t
willsget a4dista8ce whichtal2furr wh than anyofon-negi121 li 1
nlem78 , a6
.cl ner than anyofegi121 nlem78 .
BecaIse arv-pe4first-m1tch)as5 Etoarv-pe4algor thm, an nlem78 2t2at
defi( s a wubsensarSanor whonlem78 2iF)tceSli 1tRh F2 .6ome 5 foreothe
broadwhonlem78 , regirdle t of.wher whseir whsil2negi121. Fo)
nxample,oiF)1.2.3/24; ! 1.2.3.13;
tceS1.2.3.13
nlem78 2is4completeng anelesl,vbecaIsev-pe4algor thm)willsm1tch
anyolookupofrw)1.2.3.13 to2theS1.2.3/24 nlem78 . iUs .g
! 1.2.3.13; 1.2.3/24
fixes2th51 d ublemdby
hav .go1.2.3.13 bl17ke rby tc/2negi18E but.all ar whs1.2.3.* lat.
fall tcrBIgh.
[ has. Co( ig.)Fi s | has. Homs | ISC ]